scholarly journals Evolution of electronic structure across the rare-earth RNiO3 series

Author(s):  
John W. Freeland ◽  
Michel van Veenendaal ◽  
Jak Chakhalian
1976 ◽  
Vol 16 (6) ◽  
pp. 951-954
Author(s):  
Yu. M. Goryachev ◽  
B. A. Kovenskaya ◽  
E. M. Dudnik ◽  
E. N. Severyanina ◽  
B. G. Arabei

2021 ◽  
Author(s):  
◽  
A. R. H. Preston

<p>The rare-earth nitrides (ReNs) are a class of novel materials with potential for use in spintronics applications. Theoretical studies indicate that among the ReNs there could be half-metals, semimetals and semiconductors, all exhibiting strong magnetic ordering. This is because of the complex interaction between the partially filled rare-earth 4f orbital and the nitrogen 2p valence and rare-earth 5d conduction bands. This thesis uses experimental and theoretical techniques to probe the ReN electronic structure. Thin films of SmN, EuN, GdN, DyN, LuN and HfN have been produced for study. Basic characterization shows that the films are of a high quality. The result of electrical transport, magnetometry, and optical and x-ray spectroscopy are interpreted to provide information on the electronic structure. SmN, GdN, DyN are found to be semiconductors in their ferromagnetic ground state while HfN is a metal. Results are compared with density functional theory (DFT) based calculations. The free parameters resulting from use of the local spin density approximation with Hubbard-U corrections as the exchange-correlation functional are adjusted to reach good agreement with x-ray absorption and emission spectroscopy at the nitrogen K-edge. Resonant x-ray emission is used to experimentally measure valence band dispersion of GdN. No evidence of the rare-earth 4f levels is found in any of the K-edge spectroscopy, which is consistent with the result of M-edge x-ray absorption which show that the 4f wave function of the rare-earths in the ReNs are very similar to those of rare-earth metal. An auxillary resonant x-ray emission study of ZnO is used to map the dispersion of the electronic band structure across a wide range of the Brillouin zone. The data, and calculations based on GW corrections to DFT, together provide a detailed picture of the bulk electronic band structure.</p>


2008 ◽  
Vol 1122 ◽  
Author(s):  
P. Vajda

AbstractAfter an introduction to the rare earth – hydrogen phase diagram, stressing the often broad existence range of the solid solution (α), dihydride (β) and trihydride (γ) phases, we are describing in detail the fluorite-type dihydride and its superstoichiometric composition, RH2+x, where the x atoms occupy the available octahedral interstitial sites. It is shown how these additional x atoms interact with each other to form ordered H superlattices (sometimes distorting the cubic CaF2 structure) and how the latter influences the electronic structure of the systems modifying the magnetic properties and/or leading to metal-semiconductor transitions.


2003 ◽  
Vol 59 (4) ◽  
pp. 472-478 ◽  
Author(s):  
P. Gougeon ◽  
P. Gall ◽  
J.-F. Halet ◽  
R. Gautier

The crystal structures of the rare-earth members of the series RMo5O8 (R = Ce to Eu) have been investigated and compared with those of the La and Gd members previously published in order to understand the influences of the size and the charge of the cation on the different Mo—Mo bonds. The RMo5O8 compounds crystallize in the monoclinic space group P21/c. Their crystal structure is characterized by bioctahedral Mo10 clusters forming extended chains. The results of our single-crystal studies show that the modification of charge predominantly affects the Mo—Mo bonds between the Mo10 clusters and, to a lesser extent, the intra-cluster distances, while the cationic size induces only small variations. Theoretical investigations confirm this statement and allow the understanding of the bonding mode in these compounds.


2016 ◽  
Vol 397 ◽  
pp. 115-119 ◽  
Author(s):  
M.A. Korotin ◽  
N.A. Skorikov ◽  
A.V. Efremov ◽  
A.O. Shorikov

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily Been ◽  
Wei-Sheng Lee ◽  
Harold Y. Hwang ◽  
Yi Cui ◽  
Jan Zaanen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document