Analysis of the electric field behavior in the vicinity of a triple junction, using finite elements method computational simulations

2015 ◽  
Vol 74 ◽  
pp. 96-101 ◽  
Author(s):  
Guilherme Mauad Sant'Anna ◽  
Davi Sabbag Roveri ◽  
Hilton Henrique Bertan ◽  
Juliano Fujioka Mologni ◽  
Edmundo Silva Braga ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1505
Author(s):  
Byeongjun Lee ◽  
Younghyeon Song ◽  
Chan Park ◽  
Jungmin Kim ◽  
Jeongbeom Kang ◽  
...  

The patterning of electrospun fibers is a key technology applicable to various fields. This study reports a novel focused patterning method for electrospun nanofibers that uses a cylindrical dielectric guide. The finite elements method (FEM) was used to analyze the electric field focusing phenomenon and ground its explanation in established theory. The horizontal and vertical electric field strengths in the simulation are shown to be key factors in determining the spatial distribution of nanofibers. The experimental results demonstrate a relationship between the size of the cylindrical dielectric guide and that of the electrospun area accumulated in the collector. By concentrating the electric field, we were able to fabricate a pattern of less than 6 mm. The demonstration of continuous line and square patterning shows that the electrospun area can be well controlled. This novel patterning method can be used in a variety of applications, such as sensors, biomedical devices, batteries, and composites.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sebastián Irarrázaval ◽  
Jorge Andrés Ramos-Grez ◽  
Luis Ignacio Pérez ◽  
Pablo Besa ◽  
Angélica Ibáñez

AbstractThe finite elements method allied with the computerized axial tomography (CT) is a mathematical modeling technique that allows constructing computational models for bone specimens from CT data. The objective of this work was to compare the experimental biomechanical behavior by three-point bending tests of porcine femur specimens with different types of computational models generated through the finite elements’ method and a multiple density materials assignation scheme. Using five femur specimens, 25 scenarios were created with differing quantities of materials. This latter was applied to computational models and in bone specimens subjected to failure. Among the three main highlights found, first, the results evidenced high precision in predicting experimental reaction force versus displacement in the models with larger number of assigned materials, with maximal results being an R2 of 0.99 and a minimum root-mean-square error of 3.29%. Secondly, measured and computed elastic stiffness values follow same trend with regard to specimen mass, and the latter underestimates stiffness values a 6% in average. Third and final highlight, this model can precisely and non-invasively assess bone tissue mechanical resistance based on subject-specific CT data, particularly if specimen deformation values at fracture are considered as part of the assessment procedure.


Author(s):  
Janaki Pakalapati ◽  
Venkata N. Kumar Gundavarapu ◽  
Deepak Chowdary Duvvada ◽  
Sravana Kumar Bali

AbstractNow days, the establishment of spacers is in wide usage in three-phase Gas Insulated Busduct (GIB) for providing mechanical support and better insulation to the conductors. The region of the intersection of SF6 gas, enclosure end and the spacer is one of the weakest links in GIB, so the major concentration is done on minimization of electric field stress at this junction by using Functionally Graded Material (FGM) technique. The other incidents of insulation failures are due to several defects like depression, delamination etc. reduces the dielectric strength of the spacers. In this paper, an FGM post type spacer has been designed for a three-phase GIB under depression and further electric field stress at Triple Junction (TJ) is reduced by introducing a metal insert (MI) nearer to the TJ. Several filler materials are used as doping materials for obtaining different permittivity values using FGM technique to achieve uniform electric field stress. Simulation is carried out for the designed spacer at various operating voltages with different types of FGM gradings. The effect of depression with different dimensions and positions is analyzed before and after inserting MI to the FGM post type spacer in three-phase GIB.


1982 ◽  
Vol 14 (7) ◽  
pp. 865-867
Author(s):  
B. A. Kravchenko ◽  
V. G. Fokin ◽  
G. N. Gutman

Sign in / Sign up

Export Citation Format

Share Document