Performance analysis of a solar energy driven heating system

2005 ◽  
Vol 37 (10) ◽  
pp. 1028-1034 ◽  
Author(s):  
P.J. Martínez ◽  
A. Velázquez ◽  
A. Viedma
2017 ◽  
Vol 5 (4) ◽  
pp. 320-333
Author(s):  
Gade Bhavani Shankar ◽  
P.S. Kishore

Solar energy constitutes one of the main alternatives for facing the energy problems of the future. Solar air heaters are used for applications at low and moderate temperatures. Such as crop drying, timber seasoning, space heating, and drying agriculture products. Artificial geometry applied on the absorber plate is the very efficient method to improve thermal performance of solar air heaters. The thermal efficiency of solar air heaters is generally poor due to low heat transfer coefficient between the absorber plate and air flowing in the collector. Thermal performance of the conventional solar air heater was studied under varying solar and ambient conditions in different months. At day time the solar heating system stored the thermal solar energy as sensible and latent heat.  A parametric study was done for 10 months for the climatic conditions of Visakhapatnam. The effect of change in the tilt angle, length and breadth of a collector and mass flow rate on the temperature of collector has been studied. The length of the collector is 2.1m and width of the collector is 1.1 m. the performance analysis of system shows potential of improving the thermal efficiency range is 31% to 47% .From the obtained results, graphs are drawn to assess the performance analysis of a conventional air heater.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2473
Author(s):  
Yujiang He ◽  
Xianbiao Bu

The energy reserves in hot dry rock and hydrothermal systems are abundant in China, however, the developed resources are far below the potential estimates due to immature technology of enhanced geothermal system (EGS) and scattered resources of hydrothermal systems. To circumvent these problems and reduce the thermal resistance of rocks, here a shallow depth enhanced geothermal system (SDEGS) is proposed, which can be implemented by fracturing the hydrothermal system. We find that, the service life for SDEGS is 14 years with heat output of 4521.1 kW. To extend service life, the hybrid SDEGS and solar energy heating system is proposed with 10,000 m2 solar collectors installed to store heat into geothermal reservoir. The service life of the hybrid heating system is 35 years with geothermal heat output of 4653.78 kW. The novelty of the present work is that the hybrid heating system can solve the unstable and discontinuous problems of solar energy without building additional back-up sources or seasonal storage equipment, and the geothermal thermal output can be adjusted easily to meet the demand of building thermal loads varying with outside temperature.


2012 ◽  
Vol 193-194 ◽  
pp. 30-33
Author(s):  
Xue Ying Wang ◽  
Dong Xu ◽  
Ya Jun Wu

This article analyzes the problem in application the solar system was used in residential building, puts forward the requirements to use energy and choose the setting of the solar energy collector from two aspects of building and drainage design respectively. In addition, the article explicates andthe solar energy collector and building integrated design and the development of solar energy collector. At last, the article puts forward some Suggestions on the improvement and development of residential solar hot water system and the design of the hot water supply bath solution of practice to make solar energy and low power assisted by night combining.


2018 ◽  
Author(s):  
Rocio Alba-Flores ◽  
Deon Lucien ◽  
Tricia Kirkland ◽  
Lindsay Snowden ◽  
Dallas Herrin

Author(s):  
Andy Walker ◽  
Fariborz Mahjouri ◽  
Robert Stiteler

This paper describes design, simulation, construction and measured initial performance of a solar water heating system (360 Evacuated Heat-Pipe Collector tubes, 54 m2 gross area, 36 m2 net absorber area) installed at the top of the hot water recirculation loop in the Social Security Mid-Atlantic Center in Philadelphia. Water returning to the hot water storage tank is heated by the solar array when solar energy is available. This new approach, as opposed to the more conventional approach of preheating incoming water, is made possible by the thermal diode effect of heat pipes and low heat loss from evacuated tube solar collectors. The simplicity of this approach and its low installation costs makes the deployment of solar energy in existing commercial buildings more attractive, especially where the roof is far removed from the water heating system, which is often in the basement. Initial observed performance of the system is reported. Hourly simulation estimates annual energy delivery of 111 GJ/year of solar heat and that the annual efficiency (based on the 54 m2 gross area) of the solar collectors is 41%, and that of the entire system including parasitic pump power, heat loss due to freeze protection, and heat loss from connecting piping is 34%. Annual average collector efficiency based on a net aperture area of 36 m2 is 61.5% according to the hourly simulation.


Sign in / Sign up

Export Citation Format

Share Document