The thermal behavior of Trombe wall system with venetian blind: An experimental and numerical study

2015 ◽  
Vol 104 ◽  
pp. 395-404 ◽  
Author(s):  
Wei He ◽  
Zhongting Hu ◽  
Bingqing Luo ◽  
Xiaoqiang Hong ◽  
Wei Sun ◽  
...  
2019 ◽  
Vol 200 ◽  
pp. 47-57 ◽  
Author(s):  
Yuan Lin ◽  
Jie Ji ◽  
Fan Zhou ◽  
Yang Ma ◽  
Kun Luo ◽  
...  

2021 ◽  
Vol 376 ◽  
pp. 111131
Author(s):  
Robertas Poškas ◽  
Povilas Poškas ◽  
Kęstutis Račkaitis ◽  
Renoldas Zujus

2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Giulio Lorenzini ◽  
Simone Moretti

High performance heat exchangers represent nowadays the key of success to go on with the trend of miniaturizing electronic components as requested by the industry. This numerical study, based on Bejan’s Constructal theory, analyzes the thermal behavior of heat removing fin modules, comparing their performances when operating with different types of fluids. In particular, the simulations involve air and water (as representative of gases and liquids), to understand the actual benefits of employing a less heat conductive fluid involving smaller pressure losses or vice versa. The analysis parameters typical of a Constructal description (such as conductance or Overall Performance Coefficient) show that significantly improved performances may be achieved when using water, even if an unavoidable increase in pressure losses affects the liquid-refrigerated case. Considering the overall performance: if the parameter called Relevance tends to 0, air prevails; if it tends to 1, water prevails; if its value is about 0.5, water prevails in most of the case studies.


2021 ◽  
Vol 30 (6) ◽  
pp. 2254-2266
Author(s):  
Shanggang Hei ◽  
Hong Zhang ◽  
Wenjia Pan
Keyword(s):  

2015 ◽  
Vol 19 (3) ◽  
pp. 929-938
Author(s):  
Nour Lajimi ◽  
Noureddine Boukadida

This paper presents a numerical study of local thermal behavior. Vertical walls are equipped with alveolar structure and/or simple glazing in East, South and West frontages. Local temperature is assumed to be variable with time or imposed at set point temperature. Results principally show that the simple glazing number has a sensitive effect on convection heat transfer and interior air temperature. They also show that the diode effect is more sensitive in winter. The effect of alveolar structure and simple glazing on the power heating in case with set point temperature is also brought out.


2021 ◽  
Author(s):  
Tony Avedissian

The free convective heat transfer in a double-glazed window with a between-pane Venetian blind has been studied numerically. The model geometry consists of a two-dimensional vertical cavity with a set of internal slats, centred between the glazings. Approximately 700 computational fluid dynamic solutions were conducted, including a grid sensitivity study. A wide set of geometrical and thermo-physical conditions was considered. Blind width to cavity width ratios of 0.5, 0.65, 0.8, and 0.9 were studied, along with three slat angles, 0º (fully open, +/- 45º (partially open), and 75º (closed). The blind to fluid thermal conductivity ratio was set to 15 and 4600. Cavity aspects of 20, 40, and 60, were examined over a Rayleigh number range of 10 to 10⁵, with the Prandtl number equal to 0.71. The resulting convective heat transfer data are presented in terms of average Nusselt numbers. Depending on the specific window/blind geometry, the solutions indicate that the blind can either reduce or enhance the convective heat transfer rate across the glazings. The present study does not consider radiation effects in the numerical solution. Therefore, a post-processing algorithm is presented that incorporates the convective and radiative influences, in order to determine the overall heat transfer rate across the window/blind system.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chenglong Luo ◽  
Wu Zou ◽  
Dan Sun ◽  
Lijie Xu ◽  
Jie Ji ◽  
...  

This paper proposes a novel PV-Trombe wall system combined with phase-change material, which is named as PV-PCM-Trombe system. The work mainly experimentally studies the effectiveness and characteristics of using phase change materials to improve the overheating problem of PV-Trombe wall in summer. Through experiments, the photoelectric performance of the system using phase-change board surfaces with and without a matte black paint lacquer are compared; moreover, the influence on thermal environment of building is evaluated. The results indicate the PV-PCM-Trombe wall system shows an effective cooling effect on PV cell in both experiments and that the surface lacquer coating treatment of PCM plates affects little the photoelectric performance of the system and can reduce the working temperature of PV cell.


Sign in / Sign up

Export Citation Format

Share Document