Energy use and carbon reduction potentials from residential ground source heat pumps considering spatial and economic barriers

2016 ◽  
Vol 128 ◽  
pp. 287-304 ◽  
Author(s):  
Tae Hwan Lim ◽  
Robert D. De Kleine ◽  
Gregory A. Keoleian
2012 ◽  
pp. 414-453
Author(s):  
Abdeen Mustafa Omer

The increased availability of reliable and efficient energy services stimulates new development alternatives. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Anticipated patterns of future energy use and consequent environmental impacts (acid precipitation, ozone depletion and the greenhouse effect or global warming) are comprehensively discussed in this chapter. Throughout the theme several issues relating to renewable energies, environment, and sustainable development are examined from both current and future perspectives. It is concluded that green energies like wind, solar, ground-source heat pumps, and biomass must be promoted, implemented, and demonstrated from the economic and/or environmental point view.


Author(s):  
Abdeen Mustafa Omer

The increased availability of reliable and efficient energy services stimulates new development alternatives. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Anticipated patterns of future energy use and consequent environmental impacts (acid precipitation, ozone depletion and the greenhouse effect or global warming) are comprehensively discussed in this chapter. Throughout the theme several issues relating to renewable energies, environment, and sustainable development are examined from both current and future perspectives. It is concluded that green energies like wind, solar, ground-source heat pumps, and biomass must be promoted, implemented, and demonstrated from the economic and/or environmental point view.


2017 ◽  
Vol 170 (3) ◽  
pp. 103-115 ◽  
Author(s):  
Alexis Ali ◽  
Mostafa Mohamed ◽  
Mohamad Abdel-Aal ◽  
Alma Schellart ◽  
Simon Tait

2020 ◽  
Author(s):  
Eric Wagner ◽  
Benjamin McDaniel ◽  
Dragoljub Kosanovic

Ground-source heat pump (GSHP) systems have been implemented at large scales on several university campuses to provide heating and cooling. In this study, we test the idea that a GSHP system, as a replacement for an existing Combined Heat and Power (CHP) heating system coupled with conventional cooling systems, could reduce CO2 emissions, and provide a cost benefit to a university campus. We use the existing recorded annual heating and cooling loads supplied by the current system and an established technique of modeling the heat pumps and borehole heat exchangers (BHEs) using a TRNSYS model. The GSHP system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Results show that despite a decrease in heating and cooling energy usage and CO2 emissions are achieved, a significant increase in electric demand and purchased electricity result in an overall cost increase. These results highlight the need for thermal energy storage, onsite distributed energy resources and/or demand response in cases where electric heat pumps are used to help mitigate electric demand during peak periods.


2009 ◽  
Vol 41 (6) ◽  
pp. 587-595 ◽  
Author(s):  
D.P. Jenkins ◽  
R. Tucker ◽  
R. Rawlings

Sign in / Sign up

Export Citation Format

Share Document