Baseline building energy modeling of cluster inverse model by using daily energy consumption in office buildings

2017 ◽  
Vol 140 ◽  
pp. 317-323 ◽  
Author(s):  
Jong-Hwan Ko ◽  
Dong-Seok Kong ◽  
Jung-Ho Huh
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1049
Author(s):  
Zhang Deng ◽  
Yixing Chen ◽  
Xiao Pan ◽  
Zhiwen Peng ◽  
Jingjing Yang

Urban building energy modeling (UBEM) is arousing interest in building energy modeling, which requires a large building dataset as an input. Building use is a critical parameter to infer archetype buildings for UBEM. This paper presented a case study to determine building use for city-scale buildings by integrating the Geographic Information System (GIS) based point-of-interest (POI) and community boundary datasets. A total of 68,966 building footprints, 281,767 POI data, and 3367 community boundaries were collected for Changsha, China. The primary building use was determined when a building was inside a community boundary (i.e., hospital or residential boundary) or the building contained POI data with main attributes (i.e., hotel or office building). Clustering analysis was used to divide buildings into sub-types for better energy performance evaluation. The method successfully identified building uses for 47,428 buildings among 68,966 building footprints, including 34,401 residential buildings, 1039 office buildings, 141 shopping malls, and 932 hotels. A validation process was carried out for 7895 buildings in the downtown area, which showed an overall accuracy rate of 86%. A UBEM case study for 243 office buildings in the downtown area was developed with the information identified from the POI and community boundary datasets. The proposed building use determination method can be easily applied to other cities. We will integrate the historical aerial imagery to determine the year of construction for a large scale of buildings in the future.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1170 ◽  
Author(s):  
Nikolaos Kampelis ◽  
Georgios I. Papayiannis ◽  
Dionysia Kolokotsa ◽  
Georgios N. Galanis ◽  
Daniela Isidori ◽  
...  

The operation of buildings is linked to approximately 36% of the global energy consumption, 40% of greenhouse gas emissions, and climate change. Assessing the energy consumption and efficiency of buildings is a complex task addressed by a variety of methods. Building energy modeling is among the dominant methodologies in evaluating the energy efficiency of buildings commonly applied for evaluating design and renovation energy efficiency measures. Although building energy modeling is a valuable tool, it is rarely the case that simulation results are assessed against the building’s actual energy performance. In this context, the simulation results of the HVAC energy consumption in the case of a smart industrial near-zero energy building are used to explore areas of uncertainty and deviation of the building energy model against measured data. Initial model results are improved based on a trial and error approach to minimize deviation based on key identified parameters. In addition, a novel approach based on functional shape modeling and Kalman filtering is developed and applied to further minimize systematic discrepancies. Results indicate a significant initial performance gap between the initial model and the actual energy consumption. The efficiency and the effectiveness of the developed integrated model is highlighted.


2016 ◽  
Vol 22 (1) ◽  
pp. 04015010 ◽  
Author(s):  
William O. Collinge ◽  
Justin C. DeBlois ◽  
Amy E. Landis ◽  
Laura A. Schaefer ◽  
Melissa M. Bilec

2020 ◽  
Vol 13 (5) ◽  
pp. 487-500
Author(s):  
Brian L. Ball ◽  
Nicholas Long ◽  
Katherine Fleming ◽  
Chris Balbach ◽  
Phylroy Lopez

Sign in / Sign up

Export Citation Format

Share Document