Discussion of a combined solar thermal and ground source heat pump system operation strategy for office heating

2018 ◽  
Vol 162 ◽  
pp. 42-53 ◽  
Author(s):  
Huai Li ◽  
Wei Xu ◽  
Zhen Yu ◽  
Jianlin Wu ◽  
Zhenyu Yu



Energies ◽  
2015 ◽  
Vol 8 (12) ◽  
pp. 13378-13394 ◽  
Author(s):  
Yu Nam ◽  
Xin Gao ◽  
Sung Yoon ◽  
Kwang Lee


2021 ◽  
Author(s):  
Farzin M. Rad

This thesis presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto were estimated. TRNSYS, a system simulation software tool, was used to model the yearly performance of conventional GSHP as well as the proposed hybrid GSHP system. The house was equipped with a data monitoring system which was installed to read and record fluid flow, temperature and electricity consumption in different components of the system. The actual yearly data collected from the site was examined against the simulation results. In addition, a sensitivity analysis was carried out to determine the relationship between the solar collector area and the ground loop heat exchanger (GHX) length. It was shown that the ratio of GHX length reduction to solar panel area of 4.7 m/m This study demonstrates that a hybrid GSHP system, combined with solar thermal collectors, is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground loop heat exchanger length. Combining three solar thermal collectors with a total area of 6.81m



2021 ◽  
Author(s):  
Farzin M. Rad

This thesis presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto were estimated. TRNSYS, a system simulation software tool, was used to model the yearly performance of conventional GSHP as well as the proposed hybrid GSHP system. The house was equipped with a data monitoring system which was installed to read and record fluid flow, temperature and electricity consumption in different components of the system. The actual yearly data collected from the site was examined against the simulation results. In addition, a sensitivity analysis was carried out to determine the relationship between the solar collector area and the ground loop heat exchanger (GHX) length. It was shown that the ratio of GHX length reduction to solar panel area of 4.7 m/m This study demonstrates that a hybrid GSHP system, combined with solar thermal collectors, is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground loop heat exchanger length. Combining three solar thermal collectors with a total area of 6.81m



2018 ◽  
Vol 37 (2) ◽  
pp. 677-690 ◽  
Author(s):  
Wanli Wang ◽  
Jin Luo ◽  
Guiling Wang ◽  
Xi Zhu ◽  
Guiyi Liu

In this study, the operation of a ground source heat pump system was investigated over a 25-year period with careful attention paid to the effects of groundwater flow and intermittent operation strategies. First, geological and hydrogeological investigations were conducted, after which ground thermal properties were determined by thermal response tests. In order to predict the heat transfer within borehole heat exchangers under a specific operating system, a numerical model was developed using finite element subsurface flow & transport simulation system (FEFLOW). The numerical model was validated with thermal response test measurements. Three operation conditions including continuous system operation without groundwater flow, continuous system operation with groundwater flow, and intermittent operation with groundwater flow were examined. Results indicate that ground temperature disturbance was effectively reduced during groundwater flow and the intermittent operation of the system. Compared with continuous system operation without groundwater flow, the borehole heat exchanger heat transfer rate increases by 10% with groundwater flow conditions and increases by 16% with further implementation of the intermittent operation strategy. Intermittent operation with groundwater flow is highly recommended for the sustainable operation of ground source heat pump system.







2016 ◽  
Vol 142 (3) ◽  
pp. 04015022 ◽  
Author(s):  
Zhitao Zheng ◽  
Ying Xu ◽  
Jianghui Dong ◽  
Linfang Zhang ◽  
Liping Wang


Solar Energy ◽  
2021 ◽  
Vol 221 ◽  
pp. 10-29
Author(s):  
Bo Xiang ◽  
Yasheng Ji ◽  
Yanping Yuan ◽  
Chao Zeng ◽  
Xiaoling Cao ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document