Short-term optimal operation of Three-gorge and Gezhouba cascade hydropower stations in non-flood season with operation rules from data mining

2013 ◽  
Vol 65 ◽  
pp. 616-627 ◽  
Author(s):  
Chao Ma ◽  
Jijian Lian ◽  
Junna Wang
Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 944 ◽  
Author(s):  
Yanke Zhang ◽  
Jiajie Wu ◽  
Hongjie Yu ◽  
Changming Ji

To narrow the gap between theoretical research and practical application of short-term optimal reservoir power generation operation under uncertain conditions, a comprehensive study is conducted on the formulation, evaluation, and implementation of operation schemes throughout the entire procedure of optimal operation. Firstly, the three implementation modes of the optimal operation scheme are assessed with the post-evaluation method. After the optimal implementation mode is determined, the formulation and implementation of optimal operation schemes are improved by combining the advantages of conventional and optimal operation and using the concept of warning water level in operation rules. Finally, the Xiaoxuan Reservoir is taken as an example for simulation calculation under different operating conditions. The results show that the operation model integrated with operation rules has both the security of conventional operation and the profitability of optimal operation. The accordingly-formulated optimal operation schemes, when implemented with the output control mode, can provide valuable guidance for the actual operation of hydropower stations.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 226754-226772
Author(s):  
Trong-The Nguyen ◽  
Hong-Jiang Wang ◽  
Thi-Kien Dao ◽  
Jeng-Shyang Pan ◽  
Jian-Hua Liu ◽  
...  

2011 ◽  
Vol 347-353 ◽  
pp. 1370-1373
Author(s):  
Jiao Zheng ◽  
Kan Yang ◽  
Ran Zhou ◽  
Yong Huai Hao ◽  
Guo Shuai Liu

The short-term joint optimal operation simulation of Three Gorges cascade hydropower system aiming at maximum power generation benefit is proposed. And a new method for optimizing cascade hydropower station based on Adaptive Genetic Algorithm (AGA) with trigonometric selective operators is presented. In this paper, the practical optimal operation in power market is described. The temporal-spatial variation of flow between cascade hydropower stations is considered, and time of use (TOU) power price is also taken into account. Moreover, a contrast between Tangent-roulette selection operator and traditional one is made. To a certain degree, the results of simulative optimal operation based on several representative hydrographs show that Tangent-roulette wheel selection operator can find a more excellent solution, because the Tangent-roulette one can overcome the fitness requirements of non-negative. The research achievements also have an important reference for the compilation of daily generation scheduling of Three Gorges cascade hydropower system in the environment of power market.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2098 ◽  
Author(s):  
Yanke Zhang ◽  
Yuan Liu ◽  
Yueqiu Wu ◽  
Changming Ji ◽  
Qiumei Ma

In making short-term optimal operation schemes of cascade reservoirs, water flow hysteresis between the upper reservoir and the lower reservoir is often considered as constant, which cannot really reflect the hysteresis variation between different water flows and will lead to losses of the optimal operation scheme’s benefit. To depict the water flow hysteresis, a Dynamic Water Flow Hysteresis Method (DWFHM) is proposed, based on the space mapping principle. With the mapping operator in the DWFHM, the lower reservoir inflow can be directly obtained. Besides, the DWFHM is used to deal with the hydraulic relation constraint in the short-term optimal operation model of cascade reservoirs. Then, the improved model is applied to the Jinguan cascade reservoirs in the Yalong River basin and solved by an Improved Progressive Optimal Algorithm (IPOA). The results are as follows. (1) Compared with the traditional Fixed Water Flow Hysteresis Method (FWFHM), the inflow processes of the lower reservoir obtained by the DWFHM are more in line with the actual values, due to full consideration of the attenuation effect. (2) The optimal operation with the DWFHM can effectively increase the generated energy (2827 MW·h and 504 MW·h in the non-flood season and the flood season, respectively). Through the analysis of this case, the DWFHM developed in this study can effectively improve the practicability of the optimal operation scheme and reduce the risk in the operation of cascade reservoirs.


2021 ◽  
Author(s):  
Dajun Si ◽  
Shuhao Liang ◽  
Peng Sun ◽  
Yaowu Wu ◽  
Lingfang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document