Short-term joint optimization of cascade hydropower stations on daily power load curve

Author(s):  
Liu Yuan ◽  
Jianzhong Zhou ◽  
Chuyang Chang ◽  
Peng Lu ◽  
Chao Wang ◽  
...  
2018 ◽  
Vol 246 ◽  
pp. 01026
Author(s):  
Mo Li ◽  
Yongqiang Wang ◽  
Xinwen Gao ◽  
Shen Qin

With the succession of river basins and inter-basin hydropower stations, the joint optimal operation of cascade hydropower stations in the river basin has large-scale, nonlinear, strong coupling, and multi-target characteristics, and must consider the effects of hydrometeorology, water demand, and power grid security. Focusing on the preparation of short-term power generation plans for cascade hydropower stations on the Qingjiang River, a comprehensive multi-objetive power generation planning model with the largest total power generation and the least load variance on the power grid is established. Based on the constraint processing method of multi-objective optimization scheduling in long-term, the optimal flow distribution technology is adopted to improve the accuracy of power generation planning. The above model is solved by using SMPSO. The results show that the improved algorithm can effectively overcome the shortcomings of slow convergence speed and easy convergence to local optimum. It can improve the power generation efficiency of the whole cascade while responding to the peaking demand of the power grid and provide a new solution to the short-term power generation planning ideas.


2017 ◽  
Vol 549 ◽  
pp. 326-339 ◽  
Author(s):  
Liping Wang ◽  
Boquan Wang ◽  
Pu Zhang ◽  
Minghao Liu ◽  
Chuangang Li

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2826
Author(s):  
Jiahui Deng ◽  
Yu Li ◽  
Wei Ding ◽  
Bingyao Zhang ◽  
Bo Xu ◽  
...  

In cross-border water supplement cooperation, the supplement water discharged from upstream hydropower stations is the key to improving downstream benefits, but will lead to upstream power generation loss, so the upstream hydropower stations have to be aware of how much water they can offer and how much power they will lose to make the water supplement cooperation more reasonable. Therefore, this study puts forward a model to calculate the upper limit flow of water supplement of cascade hydropower stations under firm power constraints and water level constraints and proposes a new optimization method called the “collaborative-independent” joint optimization method to calculate the power generation loss under water supplement constraints. The results show that the upper limit flow will increase with the increase of annual inflow, and the uncertainty of the distribution of inflow in the year will also affect the upper limit flow: the larger the proportion of non-flood season inflow, the higher the upper limit flow. In normal and wet years, delaying water supplement time can significantly increase the upper limit flow by about 5% per month. Additionally, the “collaborative-independent” joint optimization method newly proposed in this paper can significantly improve the local optimization problem compared to the traditional optimization method. The power generation loss increases with the increase of water supplement flow, and delaying water supplement time can significantly reduce the power generation loss. The results of this paper can provide essential data support for future water resources cooperation negotiations in the Lancang-Mekong river basin to promote efficient and orderly water resources cooperation in the basin.


Sign in / Sign up

Export Citation Format

Share Document