Optimal operation rules of Three-gorge and Gezhouba cascade hydropower stations in flood season

2015 ◽  
Vol 96 ◽  
pp. 159-174 ◽  
Author(s):  
Jie Mu ◽  
Chao Ma ◽  
Jiaqing Zhao ◽  
Jijian Lian
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 226754-226772
Author(s):  
Trong-The Nguyen ◽  
Hong-Jiang Wang ◽  
Thi-Kien Dao ◽  
Jeng-Shyang Pan ◽  
Jian-Hua Liu ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 944 ◽  
Author(s):  
Yanke Zhang ◽  
Jiajie Wu ◽  
Hongjie Yu ◽  
Changming Ji

To narrow the gap between theoretical research and practical application of short-term optimal reservoir power generation operation under uncertain conditions, a comprehensive study is conducted on the formulation, evaluation, and implementation of operation schemes throughout the entire procedure of optimal operation. Firstly, the three implementation modes of the optimal operation scheme are assessed with the post-evaluation method. After the optimal implementation mode is determined, the formulation and implementation of optimal operation schemes are improved by combining the advantages of conventional and optimal operation and using the concept of warning water level in operation rules. Finally, the Xiaoxuan Reservoir is taken as an example for simulation calculation under different operating conditions. The results show that the operation model integrated with operation rules has both the security of conventional operation and the profitability of optimal operation. The accordingly-formulated optimal operation schemes, when implemented with the output control mode, can provide valuable guidance for the actual operation of hydropower stations.


2021 ◽  
Author(s):  
Dajun Si ◽  
Shuhao Liang ◽  
Peng Sun ◽  
Yaowu Wu ◽  
Lingfang Li ◽  
...  

2018 ◽  
Vol 246 ◽  
pp. 01123
Author(s):  
Chao Wang ◽  
Liang Ji ◽  
Peibing Song ◽  
Xin Hu ◽  
Jiahui Sun

Due to the great potential of large cascade hydropower stations on power generation, long-term scheduling of large cascade hydropower stations (LSLCHS) plays an important role in electrical power system. As more and more concentrations focused on the optimal operation of large cascade hydropower stations, the LSLCHS has been taken into a multi-dimensional, non-convex and non-linear optimization problem due to its complicated hydraulic connection relationships and varieties of complex constraints with considering its power generation, shipping and ecological characteristics. In order to solve this problem, a strategy of solution rapid adjustment regarding the principle of monotone principle is proposed accordingly. The simulation results show that the proposed method is an efficient for solving joint optimization dispatch model of cascade hydropower stations with fast convergent rate, strong robustness.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 895 ◽  
Author(s):  
Wu ◽  
Bai ◽  
Huang ◽  
Zhang ◽  
Mu

Climate change and human activities are two driving factors that affect the hydrological cycle of watersheds and water resource evolution. As a pivotal input to hydropower stations, changes in runoff processes may reduce the effectiveness of existing operation procedures. Therefore, it is important to analyze the influences of cascade hydropower stations under climate change and human activities and to propose revised optimal operation strategies. For the present study, three runoff series conditions including: Initial runoff, affected by only climate change, and affected by both climate change and human activities are examined by a simulation model to analyze the influence on power generation with four schemes. Additionally, an optimal operation model of cascade power stations is proposed based on the simulation model to generate single and joint optimal operation charts for future hydrological scenarios. The paper also proposes to change human activities based on optimizing operation rules to reduce its influence on downstream power stations. This procedure is theoretically applied and varied for three power stations in the upper Han River, China. The results show that the influence of climate change is greater than that of human activities in that power generation decreased by 17.95% and 12.83%, respectively, whereas combined, there is a reduction of 25.71%. Under existing hydrological conditions, the modified single and joint operation charts would increase power generation by about 32 million and 47 million kWh. Furthermore, after optimizing the upstream project, the abandoned water and power generation of these cascade power stations would reduce by 150 million m3 and 5 million kWh, respectively. This study has practical significance for the efficient operation of cascade hydropower stations and is helpful for developing reservoir operation theory under changing environments.


Sign in / Sign up

Export Citation Format

Share Document