Determination of the optimum design through different funding scenarios for future parabolic trough solar power plant in Algeria

2015 ◽  
Vol 91 ◽  
pp. 267-279 ◽  
Author(s):  
Ameur Trad ◽  
Mohand Ameziane Ait Ali
Solar Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 551-564
Author(s):  
Linrui Ma ◽  
Tong Zhang ◽  
Xuelin Zhang ◽  
Bin Wang ◽  
Shengwei Mei ◽  
...  

2021 ◽  
Vol 11 (20) ◽  
pp. 9576
Author(s):  
Wisam Abed Kattea Al-Maliki ◽  
Adnan G. Tuaamah Al-Hasnawi ◽  
Hasanain A. Abdul Wahhab ◽  
Falah Alobaid ◽  
Bernd Epple

The present work focuses on the development of a detailed dynamic model of an existing parabolic trough solar power plant (PTSPP) in Spain. This work is the first attempt to analyse the dynamic interaction of all parts, including solar field (SF), thermal storage system (TSS) and power block (PB), and describes the heat transfer fluid (HTF) and steam/water paths in detail. Advanced control circuits, including drum level, economiser water bypass, attemperator and steam bypass controllers, are also included. The parabolic trough power plant is modelled using Advanced Process Simulation Software (APROS). An accurate description of control structures and operation strategy is necessary in order to achieve a reasonable dynamic response. This model would help to identify the best operation strategy due to DNI (direct normal irradiation) variations during the daytime. The operation strategy used in this model has also been shown to be effective compared to decisions made by operators on cloudy periods by improving power plant performance and increasing operating hours.


Energy ◽  
2018 ◽  
Vol 155 ◽  
pp. 565-577 ◽  
Author(s):  
P.A. González-Gómez ◽  
J. Gómez-Hernández ◽  
J.V. Briongos ◽  
D. Santana

2020 ◽  
Vol 160 ◽  
pp. 02005
Author(s):  
Wael Al-Kouz ◽  
Jamal Nayfeh ◽  
Alberto Boretti

The paper discusses the design options for a concentrated solar power plant in Al-Khobar, Saudi Arabia. The specific conditions, in terms of weather and sun irradiance, are considered, including sand and dust, humidity, temperature and proximity to the sea. Different real-world experiences are then considered, to understand the best design to adapt to the specific conditions. Concentrated solar power solar tower with thermal energy storage such as Crescent Dunes, or concentrated solar power solar tower without thermal energy storage but boost by natural gas combustion such as Ivanpah are disregarded for the higher costs, the performances well below the design, and the extra difficulties for the specific location such as temperatures, humidity and sand/dust that suggest the use of an enclosed trough. Concentrated solar power parabolic trough without thermal energy storage such as Genesis or Mojave, of drastically reduced cost and much better performances, do not provide however the added value of thermal energy storage and dispatchability that can make interesting Concentrated solar power vs. alternatives such as wind and solar photovoltaic. Thus, the concentrated solar power parabolic trough with thermal energy storage of Solana, of intermediate costs and best performances, albeit slightly lower than the design values, is selected. This design will have to be modified to enclosed trough and adopt a Seawater, Once-trough condenser. Being the development peculiar, a small scale pilot plant is suggested before a full-scale development.


Author(s):  
Henry Price

As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included which shows how this model has been used for a thermal storage design optimization.


Sign in / Sign up

Export Citation Format

Share Document