scholarly journals A Parabolic Trough Solar Power Plant Simulation Model

Author(s):  
Henry Price

As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included which shows how this model has been used for a thermal storage design optimization.

Solar Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 551-564
Author(s):  
Linrui Ma ◽  
Tong Zhang ◽  
Xuelin Zhang ◽  
Bin Wang ◽  
Shengwei Mei ◽  
...  

2021 ◽  
Vol 11 (20) ◽  
pp. 9576
Author(s):  
Wisam Abed Kattea Al-Maliki ◽  
Adnan G. Tuaamah Al-Hasnawi ◽  
Hasanain A. Abdul Wahhab ◽  
Falah Alobaid ◽  
Bernd Epple

The present work focuses on the development of a detailed dynamic model of an existing parabolic trough solar power plant (PTSPP) in Spain. This work is the first attempt to analyse the dynamic interaction of all parts, including solar field (SF), thermal storage system (TSS) and power block (PB), and describes the heat transfer fluid (HTF) and steam/water paths in detail. Advanced control circuits, including drum level, economiser water bypass, attemperator and steam bypass controllers, are also included. The parabolic trough power plant is modelled using Advanced Process Simulation Software (APROS). An accurate description of control structures and operation strategy is necessary in order to achieve a reasonable dynamic response. This model would help to identify the best operation strategy due to DNI (direct normal irradiation) variations during the daytime. The operation strategy used in this model has also been shown to be effective compared to decisions made by operators on cloudy periods by improving power plant performance and increasing operating hours.


2020 ◽  
Vol 30 (3) ◽  
pp. 480-497
Author(s):  
Dmitriy S. Strebkov ◽  
Yuriy Kh. Shogenov ◽  
Nikolay Yu. Bobovnikov

Introduction. An urgent scientific problem is to increase the efficiency of using solar energy in solar power plants (SES). The purpose of the article is to study methods for increasing the efficiency of solar power plants. Materials and Methods. Solar power plants based on modules with a two-sided working surface are considered. Most modern solar power plants use solar modules. The reflection of solar radiation from the earth’s surface provides an increase in the production of electrical energy by 20% compared with modules with a working surface on one side. It is possible to increase the efficiency of using solar energy by increasing the annual production of electric energy through the creation of equal conditions for the use of solar energy by the front and back surfaces of bilateral solar modules. Results. The article presents a solar power plant on a horizontal surface with a vertical arrangement of bilateral solar modules, a solar power station with a deviation of bilateral solar modules from a vertical position, and a solar power plant on the southern slope of the hill with an angle β of the slope to the horizon. The formulas for calculating the sizes of the solar energy reflectors in the meridian direction, the width of the solar energy reflectors, and the angle of inclination of the solar modules to the horizontal surface are given. The results of computer simulation of the parameters of a solar power plant operating in the vicinity of Luxor (Egypt) are presented. Discussion and Conclusion. It is shown that the power generation within the power range of 1 kW takes a peak value for vertically oriented two-sided solar modules with horizontal reflectors of sunlight at the installed capacity utilization factor of 0.45. At the same time, when the solar radiation becomes parallel to the plane of vertical solar modules, there is a decrease in the output of electricity. The proposed design allows equalizing and increasing the output of electricity during the maximum period of solar radiation. Vertically oriented modules are reliable and easy to use while saving space between modules.


Energy ◽  
2018 ◽  
Vol 155 ◽  
pp. 565-577 ◽  
Author(s):  
P.A. González-Gómez ◽  
J. Gómez-Hernández ◽  
J.V. Briongos ◽  
D. Santana

Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261-271
Author(s):  
Sugeng Purwanto

ABSTRACT Renewable energy is potential alternative energy to replace the central role of fossil energy which has been going on since the early 20th century. The solar power plant is alternative energy, especially for households and industry, and can be designed as a hybrid power plant consisting of solar panels, batteries, an automatic transfer switch (ATS), and a grid. This research will focus on developing ATS based on a microcontroller. It functions to regulate the load supply automatically from the three sources of electrical energy, like solar panels, batteries, and grid while the microcontroller functions to monitor the transfer of power from the solar power plant to grid and voltage movements in the system so that current and voltage data can be recorded from time to time to improve system reliability, effectiveness, and efficiency of the tool. ATS components consist of MCB, magnetic contactor, timer H3CR, relay, 2000VA inverter, solar charge controller 100A, NodeMCU ESP8266 IoT, and battery 12V 100AH. This research is conducted in one year to produce ATS based on a microcontroller that can automatically regulate the supply of loads from the three sources of electrical energy with a good level of efficiency and stability.  Keywords: solar power plants, hybrid power plants, an automatic transfer switch.  ABSTRAK Energi baru terbarukan merupakan energi alternatif yang potensial untuk menggantikan peran sentral dari energi fosil yang telah berlangsung sejak awal abad ke 20. PLTS merupakan salah satu energi alternatif penyedia energi listrik untuk rumah tangga dan industri serta dapat dirancang sebagai sistem pembangkit listrik tenaga hibrid (PLTH) yang terdiri dari panel surya, baterai, sistem pengaturan beban atau ATS (automatic transfer switch) dan jaringan PLN. Peneltian difokuskan pada pengembangan sistem ATS berbasiskan mikrokontroler. ATS berfungsi untuk mengatur suplai beban secara otomatis dari ketiga sumber energi listrik yaitu panel surya, baterai dan PLN sedangkan mikrokontroler berfungsi memonitor perpindahan daya dari PLTS ke sumber PLN dan pergerakan tegangan pada sistem sehingga dapat dilakukan pencatatan data arus dan tegangan dari waktu ke waktu sehingga dapat meningkatkan keandalan sistem, efektifitas dan efisiensi alat. Komponen ATS terdiri dari MCB, magnetic contactor, timer H3CR, relay, inverter 2000VA, solar charge controller 100A, NodeMCU ESP8266 IoT, dan baterai 12V 100Ah. Penelitian ini akan dilakukan dalam periode satu tahun menghasilkan ATS berbasiskan mikrokontroler yang dapat mengatur suplai beban secara otomatis dari ketiga sumber energi listrik dengan tingkat efisiensi dan kestabilan yang baik. Tim penelitian ini tediri dari 3 orang dan berasal dari program studi teknik elektro, IT PLN.  Kata kunci: pembangkit listrik tenaga surya, pembangkit listrik tenaga hibrid, pengaturan suplai beban.


2020 ◽  
Vol 160 ◽  
pp. 02005
Author(s):  
Wael Al-Kouz ◽  
Jamal Nayfeh ◽  
Alberto Boretti

The paper discusses the design options for a concentrated solar power plant in Al-Khobar, Saudi Arabia. The specific conditions, in terms of weather and sun irradiance, are considered, including sand and dust, humidity, temperature and proximity to the sea. Different real-world experiences are then considered, to understand the best design to adapt to the specific conditions. Concentrated solar power solar tower with thermal energy storage such as Crescent Dunes, or concentrated solar power solar tower without thermal energy storage but boost by natural gas combustion such as Ivanpah are disregarded for the higher costs, the performances well below the design, and the extra difficulties for the specific location such as temperatures, humidity and sand/dust that suggest the use of an enclosed trough. Concentrated solar power parabolic trough without thermal energy storage such as Genesis or Mojave, of drastically reduced cost and much better performances, do not provide however the added value of thermal energy storage and dispatchability that can make interesting Concentrated solar power vs. alternatives such as wind and solar photovoltaic. Thus, the concentrated solar power parabolic trough with thermal energy storage of Solana, of intermediate costs and best performances, albeit slightly lower than the design values, is selected. This design will have to be modified to enclosed trough and adopt a Seawater, Once-trough condenser. Being the development peculiar, a small scale pilot plant is suggested before a full-scale development.


2018 ◽  
Vol 245 ◽  
pp. 07011 ◽  
Author(s):  
Lev Koshcheev ◽  
Evgeniy Popkov ◽  
Ruslan Seit

The islanding condition of grid-tied solar power plant with hydro power plant of commensurable power is considered in this article. Based on the results of the article, the relevant conclusions were drawn.


Sign in / Sign up

Export Citation Format

Share Document