Model development for biomass gasification in an entrained flow gasifier using intrinsic reaction rate submodel

2016 ◽  
Vol 108 ◽  
pp. 120-131 ◽  
Author(s):  
Xiaoyan Gao ◽  
Yaning Zhang ◽  
Bingxi Li ◽  
Xiangyu Yu
2013 ◽  
Vol 448-453 ◽  
pp. 1624-1627
Author(s):  
Xiao Yan Gao ◽  
Ya Ning Zhang ◽  
Bing Xi Li ◽  
Lu Dong

A 2 D CFD model was established to simulate sawdust gasification in an entrained flow gasifier using Ansys Fluent software. Syngas composition, syngas yield and syngas LHV were evaluated. The simulated syngas compositions were in agreement with the experiment results. The relative errors of syngas yield and LHV varied in the ranges of 2-15% and 1-9%, respectively. The results showed that the numerical model established in this study can be applied to simulate biomass gasification in entrained flow gasifier.


Author(s):  
Ghulamullah Maitlo ◽  
Rasool Bux Mahar ◽  
Khan Mohammad Brohi

Gasification of coal and biomass using CO2 and air mixture as a carrier gas offers an encouraging way to eliminate the shortage of energy and reduce carbon dioxide emissions. In the present study, the EulerianLagrangian approach was applied to understand the thermochemical conversion behavior of feedstock in entrained flow gasifier. Commercial CFD (Computational Fluid Dynamics) code ANSYS FLUENT®14 was used for the simulation purpose. It was observed that with variation in the CO2 in the air and the CO2 to cotton stalk ratio had a meaningful effect on gasification performance. The different ratios of air and CO2 in varying percentages such as 20% CO2, 30% CO2, 40% CO2, 50% CO2, 60% CO2, 70% CO2 and remaining percentages of air were introduced in entrained flow gasifier. With the increase in CO2 to cotton stalk ratio, the concentration of H2 and CO2 decreased whereas as the concentration of CO improved. It is revealed that mole fraction of CO and CH4 attained maximum when CO2% in the air was 50% and H2 mole fraction was observed maximum at a CO2% in the air was 30%. At 50% CO2 mixture in air, the maximum lower heating value and cold gas efficiency were observed. Therefore, the optimum situation might be 50% percentage CO2 in the gasifying agent for this entrained flow gasifier. Hence an increase in CO and H2, the cold gas efficiency and lower heating value reached the maximum. However, this study provides an appropriate route for energy production using cotton stalks as raw material and will help in designing and operation of the entrained flow reactor. The simulations indicate the thermodynamic limits of gasification and allow for the formulation of the general principles ruling this process. Moreover, no literature is available for the parametric investigations of Pakistani biomass gasification using entrained-flow gasifier. So this is a novel work for Pakistan and will be treated as foundation work for biomass gasification in the country.


2021 ◽  
pp. 100112
Author(s):  
Ramesh Timsina ◽  
Rajan K Thapa ◽  
Britt ME Moldestad ◽  
Marianne S Eikeland

Sign in / Sign up

Export Citation Format

Share Document