gas efficiency
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 42)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
pp. 38-43
Author(s):  
D. Svishchev

One of the ways to environmentally friendly use coal is an integrated gasification combined cycle. The most common oxidizing agent employed in gasification is oxygen. It is feasible to use air instead of oxygen to reduce the cost of generated electricity. The air gasification downsides can be reduced by using heated air and organizing a staged process. The paper is concerned with a thermodynamic analysis of the MHPS (Mitsubishi Hitachi Power Systems) air-blown staged gasifier. The analysis relies on an original approach that suggests investigating experimental data on a set of calculated ones. The experimental run nears the thermodynamic optimum, which coincides with the carbon boundary line. Cold gas efficiency can be increased from 78.6 to 81.5% by reducing the equivalence ratio. Thus, the temperature will decrease from 1 200 to 1 100 °C. The experimental run of the MHPS gasifier is not optimal thermodynamically, but it is probably optimal kinetically. The fact is that the rates of heterophase reactions decline near the carbon boundary, which leads to a sharp increase in fuel underburning and a decrease in efficiency. The experimental run is also located close to the region with the maximum thermal efficiency of the process, which is indicative of the high efficiency of converting air heat into chemical energy of producer gas.


2021 ◽  
Author(s):  
Lu Ding ◽  
Mingming Yang ◽  
Dai-Viet N. Vo ◽  
Douglas Hungwe ◽  
Jiahan Ye ◽  
...  

Abstract Disaster-hit and/or un-electrified remote areas usually have electricity accessibility issues and an abundance of plant-derived debris and wood from destroyed wooden structures; this can be potentially addressed by employing a decentralized ultra-small biomass-fed gasification power generating system. This paper presents an assessment of the technical viability of an ultra-small gasification system that utilizes densified carbonized wood pellets/briquettes. The setup was run continuously for 100 hours. A variety of biomass was densified and carbonized by harnessing fugitive heat sources before charging into the reactor. Carbonized briquettes and furnished blends exhibited inferior gasification performance compared to the carbonized pellets. In the absence of tar blockage problems, steady-state conditions were achieved when pre-treated feedstock was used. Under steady-state conditions for carbonized pellets gasification operated at an equivalence ratio of 32%, cold gas efficiency, and carbon conversion of 49.2%, and 70.5% was achieved, respectively. Overall efficiency and maximum power output of 20.3% and 21 kW were realised, respectively. The results indicate that the proposed compact ultra-small power generation system is a technically feasible approach to remedy power shortage challenge.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7384
Author(s):  
M. Shahabuddin ◽  
Sankar Bhattacharya

This study assessed the entrained flow co-gasification characteristics of coal and biomass using thermodynamic equilibrium modelling. The model was validated against entrained flow gasifier data published in the literature. The gasification performance was evaluated under different operating conditions, such as equivalence ratio, temperature, pressure and coal to biomass ratio. It is observed that the lower heating value (LHV) and cold gas efficiency (CGE) increase with increasing temperature until the process reaches a steady state. The effect of pressure on syngas composition is dominant only at non-steady state conditions (<1100 °C). The variation in syngas composition is minor up to the blending of 50% biomass (PB50). However, the PB50 shows a higher LHV and CGE than pure coal by 12%and 18%, respectively. Overall, biomass blending of up to 50% favours gasification performance with an LHV of 12 MJ/kg and a CGE of 78%.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5840
Author(s):  
Andreas Schwabauer ◽  
Marco Mancini ◽  
Yunus Poyraz ◽  
Roman Weber

The subject of this work is the mathematical modelling of a counter-current moving-bed gasifier fuelled by wood-pellets. Two versions of the model have been developed: the one-dimensional (1D) version-solving a set of Ordinary Differential Equations along the gasifier height-and the three-dimensional (3D) version where the balanced equations are solved using Computational Fluid Dynamics. Unique procedures have been developed to provide unconditionally stable solutions and remove difficulties occurring by using conventional numerical methods for modelling counter-current reactors.The procedures reduce the uncertainties introduced by other mathematical approaches, and they open up the possibility of straightforward application to more complex software, including commercial CFD packages. Previous models of Hobbs et al., Di Blasi and Mandl et al. used a correction factor to tune calculated temperatures to measured values. In this work, the factor is not required. Using the 1D model, the Mandl et al. 16.6 kW gasifier was scaled to 9.5 MW input; the 89% cold-gas efficiency, observed at 16.6 kW input, decreases only slightly to 84% at the 9.5 MW scale.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4027
Author(s):  
Xavier Rixhon ◽  
Gauthier Limpens ◽  
Diederik Coppitters ◽  
Hervé Jeanmart ◽  
Francesco Contino

Wind and solar energies present a time and space disparity that generally leads to a mismatch between the demand and the supply. To harvest their maximum potentials, one of the main challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels, such as hydrogen, methane, and methanol. They offer three main advantages: compatibility with existing distribution networks or technologies of conversion, economical storage solution for high capacity, and ability to couple sectors (i.e., electricity to transport, to heat, or to industry). However, the level of contribution of electric-energy carriers is unknown. To assess their role in the future, we used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in 2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to minimise its costs and emissions. Such a model relies on many parameters (e.g., price of natural gas, efficiency of heat pump) to represent as closely as possible the future energy system. However, these parameters can be highly uncertain, especially for long-term planning. Consequently, this work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order to highlight the influence of the parameters on the total cost of the system. The outcome of this analysis points out that, compared to the deterministic cost-optimum situation, the system cost, accounting for uncertainties, becomes higher (+17%) and twice more uncertain at carbon neutrality and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the costs) due to their importance in the energy system and their high uncertainties, their higher price, and uncertainty.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1104
Author(s):  
Donatella Barisano ◽  
Giuseppe Canneto ◽  
Francesco Nanna ◽  
Antonio Villone ◽  
Emanuele Fanelli ◽  
...  

Biomass gasification for energy purposes has several advantages, such as the mitigation of global warming and national energy independency. In the present work, the data from an innovative and intensified steam/oxygen biomass gasification process, integrating a gas filtration step directly inside the reactor, are presented. The produced gas at the outlet of the 1 MWth gasification pilot plant was analysed in terms of its main gaseous products (hydrogen, carbon monoxide, carbon dioxide, and methane) and contaminants. Experimental test sets were carried out at 0.25–0.28 Equivalence Ratio (ER), 0.4–0.5 Steam/Biomass (S/B), and 780–850 °C gasification temperature. Almond shells were selected as biomass feedstock and supplied to the reactor at approximately 120 and 150 kgdry/h. Based on the collected data, the in-vessel filtration system showed a dust removal efficiency higher than 99%-wt. A gas yield of 1.2 Nm3dry/kgdaf and a producer gas with a dry composition of 27–33%v H2, 23–29%v CO, 31–36%v CO2, 9–11%v CH4, and light hydrocarbons lower than 1%v were also observed. Correspondingly, a Low Heating Value (LHV) of 10.3–10.9 MJ/Nm3dry and a cold gas efficiency (CGE) up to 75% were estimated. Overall, the collected data allowed for the assessment of the preliminary performances of the intensified gasification process and provided the data to validate a simulative model developed through Aspen Plus software.


2021 ◽  
Vol 4 (2) ◽  
pp. 97-103
Author(s):  
Sigit Mujiarto ◽  
Bambang Sudarmanta ◽  
Hamzah Fansuri ◽  
Arif Rahman Saleh

Municipal solid waste (MSW)  is a type of general waste that includes households, traditional markets, commercial areas, and the rest from public facilities, schools, offices, roads, and so on. Refuse Derived Fuel (RDF) is obtained from the remnants of MSW which cannot be used anymore, which is flammable waste and is separated from parts that are difficult to burn through the process of chopping, sifting, and air classification. RDF has potential as an alternative energy source. In this study, RDF fuel was compared with MSW fuel both by proximate and calorific value, then the gasification process was carried out using a multi-stage downdraft gasifier to see gasification performance indicators such as syngas composition, LHV, cold gas efficiency, and tar concentration. The results showed that the gasification performance indicator for MSW biomass resulted in the syngas composition of CO = 19.08% v, H2 = 10.89% v, and CH4 = 1.54% v. The calorific value (Low Heating Value, LHV ) of syngas is 4,137 kJ/kg, cold gas efficiency is 70.14%, and tar content is 57.29 mg/Nm3. Meanwhile, RDF obtained the composition of CO gas: 18.68% v, H2: 9.5446% v, and CH4: 0% v. The maximum LHV syngas is 3365.08 kJ/kg, cold gas efficiency is 57.19 % and the smallest tar content is 80.24 mg/Nm3. When compared to RDF, MSW produces a better gasification performance indicator. However, RDF can still be used as an alternative energy source using the gasification process. The results of this study can be used to optimize the further RDF gasification process.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ahmad F ◽  
◽  
Ahmad N ◽  
Asghar U ◽  
Ali A ◽  
...  

Converting rice husk into energy is a promising method of generating renewable energy and reducing greenhouse gas emissions. In this research rice hush is considered as biomass fuel. The characteristics of rice husk gasification were investigated at an Equivalence Ratio (ER) of 0.25–0.38 and a gasifier temperature of 750-870°C in 20 tons per day (TPD) using steam explosion process in fluidized bed gasifier system. Different operation conditions, temperatures and loads, are investigated for their effects on the compositions, calorific properties, gasification efficiencies of syngas. The effects of the critical parameters, namely, Steam-to-Biomass Ratio (S/B), Particle size variation and gasification temperature on the quality of the product gas as well as the gasifier cold gas efficiency were analyzed. This is the new finding in the research. The optimal conditions of the gasification operation were an ER of 0.20 and gasifier temperature of 800°C. The low heating value of the gas product and cold gas efficiency were 1390kcal/Nm³ and 75%, respectively. After passing the generated gas through the gas cleaning units, it was confirmed that the tar in the product gas was removed with an efficiency of 98%. The cleaned product gas was used for the operation of 420kW, gas engine. Pressure loss often occurred at the bottom of the gasifier during the gasification operation; we found that the agglomerates generated by the gasification process caused it. To prevent the pressure loss caused by the agglomerates, the stable control of temperature inside the gasifier is needed and an ash removal device remove agglomerates should be installed to maintain stable long-term operation. This paper leads towards the production of Syngas and further on the electricity from the rice husk, an eminent biomass, copiously available all around the world. Especially in Pakistan, the rice is used abundantly so the raw material is easily available. The gas is produced using the gasification process in dual fluidized gasifier. It is a wonderful alternative to the natural gas with high calorific value. The sulfur contents are quite less compared to natural gas. It also have a good correlation with environment as flue gases emission is negligible relative to other source like coal, wood, plastic, waste etc. Another benefit of this process is the waste management and pollution control. The results are developed by using the detailed analysis of the process values of plants which is generating electricity by rice husk gasification. We learned, all results revealed that the dual fluidized bed gasification is more economical and efficient method compared to all other methods for commercial scale production of syngas. Results are analyzed which imply that the biomass is more gigantic source which replace the fossil fuels and leads towards the green energy in a more economical way. This paper provides an overview of previous works on combustion and gasification of rice husk in atmospheric fluiuidized bed reactors and summarizes the state of the art knowledge. As the high ash content, low bulk density, p characteristics and low ash melting point makes the other types of reactors like grate furnaces and downdraft gasifers either inefficient or unsuitable for rice husk conversion to energy, the fluiuidized bed reactor seems to be the promising choice. The overview shows that the reported results are from only small bench or lab scale units. Although a combustion efficiency of about 80% can normally be attained; the reported values in the literature, which are more than 95%, seem to be in higher order. Combustion intensity of about 530kg/h/m² is reported. It is also technically feasible to gasify rice husk in a fluidized bed reactor to yield combustible producer gas, even with sufficient heating value for application in internal combustion engines.


2021 ◽  
pp. 0734242X2110039
Author(s):  
Natvaree Chommontha ◽  
Awassada Phongphiphat ◽  
Komsilp Wangyao ◽  
Suthum Patumsawad ◽  
Sirintornthep Towprayoon

Coconut agro-industry in the western region of Thailand generates a large amount of residues. This study investigated the energy production potential of discarded coconut petioles, with a focus on co-gasification with refuse-derived fuel (RDF). Gasification tests involving petioles, RDFs and their mixtures (25%, 50%, 75% or 100% by weight) were conducted in a laboratory-scale fixed bed reactor. Fuel samples of 5 g were gasified at 700°C–900°C for 60 minutes, using simulated air (79% N2 to 21% O2, by volume) as a gasifying agent. Gasification of petioles generated producer gas with lower heating values, estimated at 0.43–0.75 MJ Nm−3, while RDF produced 0.92–1.39 MJ Nm−3. Adding greater quantities of RDF to the fuel mixture resulted in an increase in the heating value of the producer gas and cold gas efficiency. The operating temperatures and gasifying-agent flow rates affected the efficiency of process differently, depending on the fuel composition. However, the maximum cold gas efficiency from both fuels was detected in tests conducted at 800°C. In co-gasification and pure refuse-derived-fuel tests, higher temperatures and gasifying-agent flow rates led to outputs with higher energy yields. Our findings suggested that co-gasification of petiole is a viable alternative waste-treatment technology for this region.


Sign in / Sign up

Export Citation Format

Share Document