Experimental investigation on performance enhancement of forced draft wet cooling towers with special emphasis on the role of stage numbers

2016 ◽  
Vol 126 ◽  
pp. 971-981 ◽  
Author(s):  
Mehdi Rahmati ◽  
Seyed Rashid Alavi ◽  
Mohammad Reza Tavakoli
2000 ◽  
Vol 75 (4) ◽  
pp. 429-451 ◽  
Author(s):  
Ronald R. King ◽  
Rachel Schwartz

This paper reports the results of an experiment designed to investigate how legal regimes affect social welfare. We investigate four legal regimes, each consisting of a liability rule (strict or negligence) and a damage measure (out-of-pocket or independent-of-investment). The results of the experiment are for the most part consistent with the qualitative predictions of Schwartz's (1997) model; however, subjects' actual choices deviate from the point predictions of the model. We explore whether these deviations arise because: (1) subjects form faulty anticipations of their counterparts' actions and/or (2) subjects do not choose the optimal responses given their anticipations. We find that subjects behave differently under the four regimes in terms of anticipation errors and departures from best responses. For example, subjects playing the role of auditors anticipate investments most accurately under the regime with strict liability combined with out-of-pocket damages, but are least likely to choose the optimal response given their anticipations. This finding implies that noneconomic factors likely play a role in determining subjects' choices.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Liangcong Fan ◽  
Zechun Ying ◽  
Yuemei Yuan ◽  
Xinchao Zhang ◽  
Bin Xu

Abstract Corrupt deals are commonly arranged by intermediaries. However, attempts to deter corruption pay little attention to the role of intermediaries in corrupt deals. This paper reports a laboratory bribery experiment on corruption designed to investigate how intermediaries with information about the lowest bribe that the official is willing to accept in a briber-initiated corrupt deal affect the effectiveness of the four-eyes-principle (FEP) on deterring corruption. We find that the introduction of the FEP significantly decreases the corruption level by increasing uncertainty. However, the presence of intermediaries with information completely offsets the positive effect of introducing the FEP on preventing corruption. Our findings suggest that further research on corruption should allow a more active role of intermediaries, and legislators should take the role of intermediaries into account when designing anti-corruption mechanisms.


2002 ◽  
Vol 49 (6) ◽  
pp. 995-1009 ◽  
Author(s):  
M.V. Gerasimov ◽  
Yu.P. Dikov ◽  
O.I. Yakovlev ◽  
F. Wlotzka

2021 ◽  
Author(s):  
Kartik Sau ◽  
Tamio Ikeshoji ◽  
Godwill Mbiti Kanyolo ◽  
Titus Masese

<b>Although the fascinatingly rich crystal chemistry of honeycomb layered oxides has been accredited as the propelling force behind their remarkable electrochemistry, the atomistic mechanisms surrounding their operations remain unexplored. Thus, herein, we present an extensive molecular dynamics study performed systematically using a refined set of inter-atomic potential parameters of <i>A</i><sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> (where <i>A</i> = Li, Na, and K). We demonstrate the effectiveness of the Vashishta-Rahman form of the interatomic potential in reproducing various structural and transport properties of this promising class of materials and predict an exponential increase in cationic diffusion with larger interlayer distances. The simulations further demonstrate the correlation between broadened inter-layer (inter-slab) distances associated with the larger ionic radii of K and Na compared to Li and the enhanced cationic conduction exhibited in K<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> and Na<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> relative to Li<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub>. Whence, our findings connect lower potential energy barriers, favourable cationic paths and wider bottleneck size along the cationic diffusion channel within frameworks (comprised of larger mobile cations) to the improved cationic diffusion experimentally observed in honeycomb layered oxides. Furthermore, we explicitly study the role of inter-layer distance and cationic size in cationic diffusion. Our theoretical studies reveal the dominance of inter-layer distance over cationic size, a crucial insight into the further performance enhancement of honeycomb layered oxides.</b><br>


2021 ◽  
Author(s):  
Kartik Sau ◽  
Tamio Ikeshoji ◽  
Godwill Mbiti Kanyolo ◽  
Titus Masese

<b>Although the fascinatingly rich crystal chemistry of honeycomb layered oxides has been accredited as the propelling force behind their remarkable electrochemistry, the atomistic mechanisms surrounding their operations remain unexplored. Thus, herein, we present an extensive molecular dynamics study performed systematically using a reliable set of inter-atomic potential parameters of </b><i>A</i><sub>2</sub><b>Ni</b><sub>2</sub><b>TeO</b><sub>6</sub><b> (where </b><i>A</i><b> = Li, Na, and K). We demonstrate the effectiveness of the Vashishta-Rahman form of the inter-atomic potential in reproducing various structural and transport properties of this promising class of materials and predict an exponential increase in cationic diffusion with larger inter-layer distances. The simulations demonstrate the correlation between broadened inter-layer (inter-slab) distances associated with the larger ionic radii of K and Na compared to Li and the enhanced cationic conduction exhibited in K</b><sub>2</sub><b>Ni</b><sub>2</sub><b>TeO</b><sub>6</sub><b> and Na</b><sub>2</sub><b>Ni</b><sub>2</sub><b>TeO</b><sub>6</sub><b> relative to Li</b><sub>2</sub><b>Ni</b><sub>2</sub><b>TeO</b><sub>6</sub><b>. Whence, our findings connect lower potential energy barriers, favourable cationic paths and wider bottleneck size along the cationic diffusion channel within frameworks (comprised of larger mobile cations) to the improved cationic diffusion experimentally observed in honeycomb layered oxides. Furthermore, we elucidate the role of inter-layer distance and cationic size in cationic diffusion. Our theoretical studies reveal the dominance of inter-layer distance over cationic size, a crucial insight into the further performance enhancement of honeycomb layered oxides.</b><br>


Sign in / Sign up

Export Citation Format

Share Document