Large-scale optimal integration of wind and solar photovoltaic power in water-energy systems on islands

2021 ◽  
Vol 235 ◽  
pp. 113982
Author(s):  
Pedro Cabrera ◽  
José Antonio Carta ◽  
Henrik Lund ◽  
Jakob Zinck Thellufsen
2019 ◽  
Vol 122 ◽  
pp. 02004 ◽  
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

In 2017, electricity generation from renewable sources contributed more than one quarter (30.7%) to total EU-28 gross electricity consumption. Wind power is for the first time the most important source, followed closely by hydro power. The growth in electricity from photovoltaic energy has been dramatic, rising from just 3.8 TWh in 2007, reaching a level of 119.5 TWh in 2017. Over this period, the contribution of photovoltaic energy to all electricity generated in the EU-28 from renewable energy sources increased from 0.7% to 12.3%. During this period the investment cost of a photovoltaic power plant has decreased considerably. Fundamentally, the cost of solar panels and inverters has decreased by more than 50%. The solar photovoltaic energy potential depends on two parameters: global solar irradiation and photovoltaic panel efficiency. The average solar irradiation in Spain is 1,600 kWh m-2. This paper analyzes the economic feasibility of developing large scale solar photovoltaic power plants in Spain. Equivalent hours between 800-1,800 h year-1 and output power between 100-400 MW have been considered. The profitability analysis has been carried out considering different prices of the electricity produced in the daily market (50-60 € MWh-1). Net Present Value (NPV) and Internal Rate of Return (IRR) were estimated for all scenarios analyzed. A solar PV power plant with 400 MW of power and 1,800 h year-1, reaches a NPV of 196 M€ and the IRR is 11.01%.


Solar Energy ◽  
2020 ◽  
Vol 203 ◽  
pp. 101-113 ◽  
Author(s):  
Maria Malvoni ◽  
Nallapaneni Manoj Kumar ◽  
Shauhrat S Chopra ◽  
Nikos Hatziargyriou

2020 ◽  
Vol 30 (13) ◽  
pp. 2050259
Author(s):  
Abdelaziz Salah Saidi

This research shows a structural voltage stability analysis of a distribution network incorporating large-scale solar photovoltaic power plant. Detailed modeling of the transmission network and photovoltaic systems is presented and a differential-algebraic equations model is developed. The resulting system state and load-flow Jacobian matrix are reorganized according to the type of the bus system in place of the standard injected complex power equations arrangement. The interactions among system buses for loading tests and solar photovoltaic power penetration are structurally scrutinized. Two-bus bifurcations are revealed to be a predecessor to system voltage collapse. The investigation is carried out by using bifurcation diagrams of photovoltaic generation margin, load-flow analysis, short-circuits, photovoltaic farm disconnections and loading conditions. Furthermore, evaluation of voltage stability reveals that the dynamic component of the voltage strongly depends on fault short-circuit capacity of the power system at the bus, where, the solar system is integrated. The overall result, which encompasses the views from the presented transmission network integration studies, is a positive outcome for future grid integration of solar photovoltaic in the Tunisian system. Tunisia’s utilities policies on integration of solar photovoltaic in distribution network is expected to benefit from the results of the presented study. Moreover, given the huge potential and need for solar photovoltaic penetration into the transmission network, the presented comprehensive analysis will be a valuable guide for evaluating and improving the performances of national transmission networks of other countries too.


2011 ◽  
Vol 366 ◽  
pp. 117-120
Author(s):  
Shao Bo Li ◽  
Wei Ping Luo

Solar power system for its stable and reliable, easy to install, operate and maintain simple, has been more and more widely used. In the large-scale use of solar power generation equipment at the same time, due to its characteristics of the reasons for the installation of equipment from lightning over-voltage and increase the probability of damage, seriously endangering the safety of solar power generation system. Study of the solar system lightning delay.


2018 ◽  
Vol 25 (s2) ◽  
pp. 176-181 ◽  
Author(s):  
Yaqi Shi ◽  
Wei Luo

Abstract The use of new energy generation technologies such as solar energy and electric propulsion technologies to form integrated power propulsion technology for ships has become one of the most concerned green technologies on ships. Based on the introduction of the principles and usage patterns of solar photovoltaic systems, the application characteristics of solar photovoltaic systems and their components in ships are analyzed. The important characteristics of the marine power grid based on solar photovoltaic systems are explored and summarized, providing a basis for future system design and application. Photovoltaic solar cells are made using semiconductor effects that convert solar radiation directly into electrical energy. Several such battery devices are packaged into photovoltaic solar cell modules, and several components are combined into a certain power photovoltaic array according to actual needs, and are matched with devices such as energy storage, measurement, and control to form a photovoltaic power generation system. This article refers to the basic principle and composition of the land-use solar photovoltaic system, and analyzes the difference between the operational mode and the land use of the large-scale ocean-going ship solar photovoltaic system. Specific analysis of large-scale ocean-going ship solar photovoltaic system complete set of technical route, for the construction of marine solar photovoltaic system to provide design ideas.


2019 ◽  
Vol 10 (4) ◽  
pp. 317-324
Author(s):  
Young hwan Kim ◽  
Dong hoon Yoo ◽  
Hee Han ◽  
Jae soo Bae

Sign in / Sign up

Export Citation Format

Share Document