Future fuel cell and internal combustion engine automobile technologies: A 25-year life cycle and fleet impact assessment

Energy ◽  
2006 ◽  
Vol 31 (12) ◽  
pp. 2064-2087 ◽  
Author(s):  
A SCHAFER ◽  
J HEYWOOD ◽  
M WEISS
Energy ◽  
2013 ◽  
Vol 59 ◽  
pp. 402-412 ◽  
Author(s):  
Dawei Wang ◽  
Nada Zamel ◽  
Kui Jiao ◽  
Yibo Zhou ◽  
Shuhai Yu ◽  
...  

2014 ◽  
Vol 63 (1) ◽  
pp. 354-361 ◽  
Author(s):  
Lúcia Bollini Braga ◽  
Jose Luz Silveira ◽  
Marcio Evaristo da Silva ◽  
Einara Blanco Machin ◽  
Daniel Travieso Pedroso ◽  
...  

Author(s):  
Ryan Falkenstein-Smith ◽  
Kang Wang ◽  
Ryan Milcarek ◽  
Jeongmin Ahn

New York State is expected to experience future population growth that is increasingly concentrated in urban areas, where there is already a heavy burden on the existing energy, water and waste management infrastructure. To meet aggressive environmental standards (such as that established by the State’s “80x50” goal), future electrical power capacity must produce substantially fewer greenhouse gas emissions than currently generated by coal- or natural gas-fired power plants. Currently, biogas is combusted to produce heat and electricity via an internal combustion engine generator set. A conventional internal combustion engine generator set is 22–45 % efficient in converting methane to electricity, thus wasting 65–78 % of the biogas energy content unless the lower temperature heat can be recovered. Fuel cells, on the other hand, are 40–60 % efficient in converting methane to electrical energy, and 80–90 % efficient for cogeneration if heat (> 400 °C) is recovered and utilized for heating and cooling in the community power system. This current research studies the feasibility of a community biomass-to-electricity power system which offers significant environmental, economic and resilience improvements over centrally-generated energy, with the additional benefit of reducing or eliminating disposal costs associated with landfills and publicly-owned treatment works (POTWs). Flame Fuel Cell (FFC) performance was investigated while modifying biogas content and fuel flow rate. A maximum power density peak at 748 mWcm-2 and an OCV of 0.856 V was achieved. It should be noted that the performance obtained with the model biofuel is comparable to the performances of direct methane fueled DC-SOFC and SC-SOFC. The common trends also concluded an acceptable range for optimal performance. Although the methane to CO2 ratios of 3:7 and 2:8 produced power, they are not the strongest ratios to have optimal performance, meaning that operation should stay between the 6:4/4:6 ratio range. Lastly, the amount of air added to the biogas mixture is crucial to achieving the optimal performance of the cell. The data obtained confirmed the feasibility of a biofuel driven fuel cell CHP device capable of achieving higher efficiency than existing technologies. The significant power output produced from the sustainable biogas composition is competitive with current hydrocarbon fuel sources. This idea can be expanded for a community waste management infrastructure.


Sign in / Sign up

Export Citation Format

Share Document