scholarly journals Comparative life cycle assessment of unmanned aerial vehicles, internal combustion engine vehicles and battery electric vehicles for grocery delivery

Procedia CIRP ◽  
2020 ◽  
Vol 90 ◽  
pp. 244-250
Author(s):  
Kris Yowtak ◽  
Justin Imiola ◽  
Michael Andrews ◽  
Keith Cardillo ◽  
Steven Skerlos
Author(s):  
Xin Sun ◽  
Vanessa Bach ◽  
Matthias Finkbeiner ◽  
Jianxin Yang

AbstractChina is globally the largest and a rapidly growing market for electric vehicles. The aim of the paper is to determine challenges related to criticality and environmental impacts of battery electric vehicles and internal combustion engine vehicles, focusing not only on a global but also the Chinese perspective, applying the ESSENZ method, which covers a unique approach to determine criticality aspects as well as integrating life cycle assessment results. Real industry data for vehicles and batteries produced in China was collected. Further, for the criticality assessment, Chinese import patterns are analyzed. The results show that the battery electric vehicle has similar and partly increased environmental impacts compared with the internal combustion engine vehicle. For both, the vehicle cycle contributes to a large proportion in all the environmental impact categories except for global warming. Further, battery electric vehicles show a higher criticality than internal combustion engine vehicles, with tantalum, lithium, and cobalt playing essential roles. In addition, the Chinese-specific results show a lower criticality compared to the global assessment for the considered categories trade barriers and political stability, while again tantalum crude oil and cobalt have high potential supply disruptions. Concluding, battery electric vehicles still face challenges regarding their environmental as well as criticality performance from the whole supply chain both in China and worldwide. One reason is the replacement of the lithium-ion power battery. By enhancing its quality and establishing battery recycling, the impacts of battery electric vehicle would decrease.


2019 ◽  
Vol 118 ◽  
pp. 02010 ◽  
Author(s):  
Ningning Ha

In China, the growth of new energy vehicles is especially rapid and the explosive growth of the automobile brought an increasing impact on the environment. This paper selected Electric Vehicles, Hybrid Vehicles and Internal Combustion Engine Vehicles of the same model of BYD as the object. We established a Life Cycle Assessment with GaBi6 software and CML2001 model. The results show that in the whole life cycle, the influences of ADP, GWP and ODP of Electric Vehicles are less than that of Hybrid Vehicles and Internal Combustion Engine Vehicles. The impact of Electric Vehicles are 39%, 50%, and 4% of the Internal Combustion Engine Vehicles and the Hybrid Vehicles’ impact are 65%, 78% and 85% of the Internal Combustion Engine Vehicles. Electric Vehicles and Hybrid Vehicles have a clear improvement in these three types of impacts. The comparison results of AP, EP, FAETP, MAETP and POCP show that the potential impact of Electric Vehicles is greater than that of Hybrid Vehicles and Internal Combustion Engine Vehicles. At present, improving production technology and reducing the consumption of energy during production phase are effective measures to reduce the environmental impact of Internal Combustion Engine Vehicles and Hybrid Vehicles of China.


Author(s):  
Nikola Holjevac ◽  
Federico Cheli ◽  
Massimiliano Gobbi

The early concept design of a vehicle is becoming increasingly crucial to determine the success of a car. Broadening market competition, more stringent regulations and fast technological changes require a prompt response from carmakers, and computer-aided engineering has emerged in recent years as the promising way to provide more efficient and cost-effective design and to cut development time and costs. The work presented in this paper shows an approach based on computer-aided engineering to determine vehicle’s energy consumption and performance. The different vehicle’s subsystem are first analyzed separately by using dedicated simulation tools and then integrated to obtain the entire vehicle. The work covers a wide range of vehicle layouts. Internal combustion engine vehicles and battery electric vehicles are considered and various transmission configurations are contemplated with respect to some of the most adopted solutions for these vehicles. The simulation results allow to identify the most effective design variables regarding the combustion engine and the electric motor and to compare the different layouts over various car segments. The results clearly point out that for internal combustion engine vehicles, the combustion engine is the crucial component that defines the vehicle’s characteristics and particularly the energy consumption. Conversely, battery electric vehicles show a more balanced distribution of the losses, and therefore to improve the vehicle’s behavior, different components should be considered in detail. Nevertheless, the choice of the number of electric motors and the transmission choice play a significant role in defining the vehicle performances.


Sign in / Sign up

Export Citation Format

Share Document