Multicriteria optimization of a distributed energy supply system for an industrial area

Energy ◽  
2013 ◽  
Vol 58 ◽  
pp. 128-137 ◽  
Author(s):  
D. Buoro ◽  
M. Casisi ◽  
A. De Nardi ◽  
P. Pinamonti ◽  
M. Reini
2018 ◽  
Vol 175 ◽  
pp. 04007
Author(s):  
LU Jin ◽  
YAN Tao ◽  
CAI Wen ◽  
Yang Hong-yan ◽  
WAN Zhong-hai

The distributed energy generation system is one of the main forms of the second-generation energy system currently. Three kinds of viable schemas of distributed energy supply system for nine users of the small region heat of Yangpu area combining with urban heating were proposed in this thesis, in which the gas turbines were selected. By analyzing the heat economy and pollutant emissions, the advantages and disadvantages of each schema were found out and the relatively better one was selected ultimately. Finally, some possible development trends and the prospects of the distributing energy supply system were also related and some complementary proposals were to table for some aspects of the system.


Author(s):  
Toshihisa Ishida ◽  
Nobuya Nakajima ◽  
Kenichi Sawada ◽  
Tsutomu Yoritsune ◽  
Shoichiro Shimada ◽  
...  

Author(s):  
Dario Buoro ◽  
Alberto De Nardi ◽  
Piero Pinamonti ◽  
Mauro Reini

The paper presents the optimization of an energy supply system for an industrial area. The system is mainly composed of a district heating network (DHN), of a solar thermal plant with long term heat storage, of a set of combined heat and power units (CHP) and of additional thermal/cooling energy supply machines. The thermal vector can be produced by solar thermal modules, by fossil-fuel cogenerator or by conventional boilers. The optimization algorithm is based on a Mixed Integer Linear Programming (MILP) model and it has to determine the optimal structure of the energy system and the size of the components (solar field area, heat storage volume, machines sizes, etc.). The model allows to calculate the economical and environmental benefits of the solar thermal plant compared to the cogenerative production, as well as the share of the thermal demand covered by renewable energies. The aim of the paper is to identity the optimal energy production mix able to meet the user energy demands and furthermore how the solar thermal energy integration affects the optimal energy system configuration. The average costs of the heat produced for the users have been evaluated for different optimal configurations, and it emerges that the solution including some cogenerators located in strategic production units, the district heating network, the long term heat storage and a solar plant of proper size, allows achieving the lowest cost of the heat. Thus, the integrated solution turns out to be the best from both the economical and environmental point of view.


Author(s):  
Xiao Xue ◽  
Yangbing Zheng ◽  
Chao Lu

In order to improve the economical performance of distributed energy supply system under uncertainty, the improved gray wolf algorithm is constructed for optimal allocation of distributed energy supply system. The relating research progress is summarized firstly, and effect of improved gray wolf algorithm on optimal allocation of distributed energy supply system are studied. The optimal allocation model of distributed energy supply system is constructed considering fuel consumption, operation and maintenance cost, environment penalty cost, and power grid energy exchange function, and the uncertain factor is processed based on scienario method. And then the improved gray wolf algorithm is designed, and the initial strategy of population and the regulated method of main parameters are improved. Finally, simulation analysis is carried out, simulation results show that the proposed model can obtain best optimal allocation effect of system.


Sign in / Sign up

Export Citation Format

Share Document