An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system

Energy ◽  
2016 ◽  
Vol 102 ◽  
pp. 416-426 ◽  
Author(s):  
Jimin Kim ◽  
Taehoon Hong ◽  
Jaemin Jeong ◽  
Myeonghwi Lee ◽  
Choongwan Koo ◽  
...  
2021 ◽  
Vol 336 ◽  
pp. 02022
Author(s):  
Liang Meng ◽  
Wen Zhou ◽  
Yang Li ◽  
Zhibin Liu ◽  
Yajing Liu

In this paper, NSGA-Ⅱ is used to realize the dual-objective optimization and three-objective optimization of the solar-thermal photovoltaic hybrid power generation system; Compared with the optimal solution set of three-objective optimization, optimization based on technical and economic evaluation indicators belongs to the category of multi-objective optimization. It can be considered that NSGA-Ⅱ is very suitable for multi-objective optimization of solar-thermal photovoltaic hybrid power generation system and other similar multi-objective optimization problems.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4391
Author(s):  
Zhiyong Li ◽  
Shiping Pu ◽  
Yougen Chen ◽  
Renyong Wei

Setting reasonable circuit parameters is an important way to improve the quality of inverters, including waveform quality and power loss. In this paper, a circuit system of line voltage cascaded quasi-Z-source inverter (LVC-qZSI) is built. On this basis, the double frequency voltage ripple ratio and power loss ratio are selected as optimization targets to establish a multi-objective optimization model of LVC-qZSI parameters. To simplify the calculation, an integration optimization strategy of LVC-qZSI parameters based on GRA-FA is proposed. Where, the grey relation analysis (GRA) is used to simplify the multi-objective optimization model. In GRA, the main influence factors are selected as optimization variables by considering the preference coefficient. Then, firefly algorithm (FA) is used to obtain the optimal solution of the multi-objective optimization model. In FA, the weights of objective functions are assigned based on the principle of information entropy. The analysis results are verified by simulation. Research results indicate that the optimization strategy can effectively reduce the double frequency voltage ripple ratio and power loss ratio. Therefore, the strategy proposed in this paper has a superior ability to optimize the parameters of LVC-qZSI, which is of great significance to the initial values setting.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
NORHUDA ABDUL MANAF ◽  
Muhammad Hussin Abdul Jabar ◽  
Muhammad Hussin Abdul Jabar ◽  
Nor Ruwaida Jamian

Phase change material (PCM) features an attractive option due to its solar thermal storage capability to assist the cooling/heating process especially during night operation, thus contributing to the reduction of energy cost and carbon footprint. This study aims to analyse the emergence of PCM in the application of solar thermal energy. Subsequently, to envisage Technology Readiness Level (TRL) and commercialisation opportunity based on historical and contemporary research trends. This review encompasses of peer-reviewed literatures from Scopus database for one decade between 2010 and 2019. Based on the review, there is a moderate growth on the research related to PCM-solar thermal at 22% of emergence rate from the past one decade. China has dominated in this research development by concurring approximately 22% from the number of research articles published globally. It can be concluded that the application of PCM in solar thermal energy system is at TRL 5 which reflects research and development (R&D) progress is at intermediate prototypical development based on the trend of academic publication. Furthermore, based on the review, PCM features great potential in commercialisation opportunity due to its vital contribution as a frontier material/substance in overcoming the challenges of energy and environmental insecurity.


Sign in / Sign up

Export Citation Format

Share Document