scholarly journals An Integration Optimization Strategy of Line Voltage Cascaded Quasi-Z-Source Inverter Parameters Based on GRA-FA

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4391
Author(s):  
Zhiyong Li ◽  
Shiping Pu ◽  
Yougen Chen ◽  
Renyong Wei

Setting reasonable circuit parameters is an important way to improve the quality of inverters, including waveform quality and power loss. In this paper, a circuit system of line voltage cascaded quasi-Z-source inverter (LVC-qZSI) is built. On this basis, the double frequency voltage ripple ratio and power loss ratio are selected as optimization targets to establish a multi-objective optimization model of LVC-qZSI parameters. To simplify the calculation, an integration optimization strategy of LVC-qZSI parameters based on GRA-FA is proposed. Where, the grey relation analysis (GRA) is used to simplify the multi-objective optimization model. In GRA, the main influence factors are selected as optimization variables by considering the preference coefficient. Then, firefly algorithm (FA) is used to obtain the optimal solution of the multi-objective optimization model. In FA, the weights of objective functions are assigned based on the principle of information entropy. The analysis results are verified by simulation. Research results indicate that the optimization strategy can effectively reduce the double frequency voltage ripple ratio and power loss ratio. Therefore, the strategy proposed in this paper has a superior ability to optimize the parameters of LVC-qZSI, which is of great significance to the initial values setting.

2013 ◽  
Vol 368-370 ◽  
pp. 830-837
Author(s):  
Mao Qiao Cui ◽  
Hai Yan Huang ◽  
Fu Lai Wang ◽  
Yong Qiu

This paper describes in detail a multi-objective optimization strategy and decision-making method in the process of steel frame optimization design. A step-by-step analysis process integrating optimization algorithm and model analysis is proposed to solve the present problem. A multi-objective algorithm method using fast Non-dominated Sorting Genetic Algorithm is employed to obtain the Pareto-optimal solution set through an evolutionary optimization process. A high-level multiple attribute decision-making method based on intuitionistic fuzzy set theory is adopted to rank these solutions from the best to worst, and to determine the best solution. An example is used to demonstrate the proposed optimization model and decision-making method.


Kybernetes ◽  
2018 ◽  
Vol 47 (1) ◽  
pp. 20-43 ◽  
Author(s):  
Wu Deng ◽  
Meng Sun ◽  
Huimin Zhao ◽  
Bo Li ◽  
Chunxiao Wang

Purpose This study aims to propose a new airport gate assignment method to effectively improve the comprehensive operation capacity and efficiency of hub airport. Gate assignment is one of the most important tasks for airport ground operations, which assigns appropriate airport gates with high efficiency reasonable arrangement. Design/methodology/approach In this paper, on the basis of analyzing the characteristics of airport gates and flights, an efficient multi-objective optimization model of airport gate assignment based on the objectives of the most balanced idle time, the shortest walking distances of passengers and the least number of flights at apron is constructed. Then an improved ant colony optimization (ICQACO) algorithm based on the ant colony collaborative strategy and pheromone update strategy is designed to solve the constructed model to fast realize the gate assignment and obtain a rational and effective gate assignment result for all flights in the different period. Findings In the designed ICQACO algorithm, the ant colony collaborative strategy is used to avoid the rapid convergence to the local optimal solution, and the pheromone update strategy is used to quickly increase the pheromone amount, eliminate the interference of the poor path and greatly accelerate the convergence speed. Practical implications The actual flight data from Guangzhou Baiyun airport of China is selected to verify the feasibility and effectiveness of the constructed multi-objective optimization model and the designed ICQACO algorithm. The experimental results show that the designed ICQACO algorithm can increase the pheromone amount, accelerate the convergence speed and avoid to fall into the local optimal solution. The constructed multi-objective optimization model can effectively improve the comprehensive operation capacity and efficiency. This study is a very meaningful work for airport gate assignment. Originality/value An efficient multi-objective optimization model for hub airport gate assignment problem is proposed in this paper. An improved ant colony optimization algorithm based on ant colony collaborative strategy and the pheromone update strategy is deeply studied to speed up the convergence and avoid to fall into the local optimal solution.


2011 ◽  
Vol 199-200 ◽  
pp. 1180-1184
Author(s):  
Han Zhang ◽  
Xiao Qin Shen ◽  
Fu Sheng Yu ◽  
Jian Hua Liu

Various elements in planetary gear reducer design are discussed. A multi-objective optimization model is created. The model requires the minimum volume and the maximum contact ratio. The method of multiplication and division is used to solve the multi-objective problem, and the method of feasibility enumeration is used to handle the discrete variables. The results show that the optimal solution meets the actual requirements.


Energy ◽  
2016 ◽  
Vol 102 ◽  
pp. 416-426 ◽  
Author(s):  
Jimin Kim ◽  
Taehoon Hong ◽  
Jaemin Jeong ◽  
Myeonghwi Lee ◽  
Choongwan Koo ◽  
...  

Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


Sign in / Sign up

Export Citation Format

Share Document