Investigating the entropy generation in condensing steam flow in turbine blades with volumetric heating

Energy ◽  
2018 ◽  
Vol 147 ◽  
pp. 701-714 ◽  
Author(s):  
Masoud Vatanmakan ◽  
Esmail Lakzian ◽  
Mohammad Reza Mahpeykar
Author(s):  
Yogini Patel ◽  
Giteshkumar Patel ◽  
Teemu Turunen-Saaresti

With the tremendous role played by steam turbines in power generation cycle, it is essential to understand the flow field of condensing steam flow in a steam turbine to design an energy efficient turbine because condensation at low pressure (LP) turbine introduces extra losses, and erosion in turbine blades. The turbulence has a leading role in condensing phenomena which involve a rapid change of mass, momentum and heat transfer. The paper presents the influence of turbulence modelling on non-equilibrium condensing steam flows in a LP steam turbine stage adopting CFD code. The simulations were conducted using the Eulerian-Eulerian approach, based on Reynolds-averaged Navier-Stokes equations coupled with a two equation turbulence model, which is included with nucleation and droplet growth model for the liquid phase. The SST k-ω model was modified, and the modifications were implemented in the CFD code. First, the performance of the modified model is validated with nozzles and turbine cascade cases. The effect of turbulence modelling on the wet-steam properties and the loss mechanism for the 3D stator-rotor stage is discussed. The presented results show that an accurate computational prediction of condensing steam flow requires the turbulence to be modelled accurately.


Author(s):  
Yaping Ju ◽  
Yi Feng ◽  
Chuhua Zhang

Abstract Reynolds averaged Navier-Stokes model-based conjugate heat transfer method is popularly used in simulations and designs of internally cooled gas turbine blades. One of the important factors influencing its prediction accuracy is the choice of turbulence models for different fluid regions because the blade passage flow and internal cooling have considerably different flow features. However, most studies adopted the same turbulence models in passage flow and internal cooling. Another important issue is the comprehensive evaluation of the losses caused by flow and heat transfer for both fluid and solid regions. In this study, a RANS-based CHT solver for subsonic/transonic flows was developed based on OpenFOAM and validated and used to explore suitable RANS turbulence model combinations for internally cooled gas turbine blades. Entropy generation, able to weigh the losses caused by flow friction and heat transfer, was used in the analyses of two internally cooled vanes to reveal the loss mechanisms. Findings indicate that the combination of the k-? SST-?-Re? transition model for passage flow and the standard k-e model for internal cooling agreed best with measurement data. The relative error of vane dimensionless temperature was less than 3%. The variations of entropy generation with different internal cooling inlet velocities and temperatures indicate that reducing entropy generation was contradictory with enhancing heat transfer performance. This study, providing a reliable computing tool and a comprehensive performance parameter, has an important application value for the design of internally cooled gas turbine blades.


Author(s):  
Giteshkumar Patel ◽  
Yogini Patel ◽  
Teemu Turunen-Saaresti

The paper describes the influence of trailing edge geometries on the non-equilibrium homogeneously condensing steam flow in the stationary cascade of turbine blades. The computational fluid dynamics (CFD) simulations were performed with the ANSYS Fluent CFD code using the Eulerian-Eulerian approach. The condensation phenomena were simulated on the basis of the classical nucleation theory, and the steam properties were calculated with the real gas model. Flow turbulence was solved by employing the modified version of the shear-stress transport (SST) k-ω turbulence model. For this study, three trailing edge profiles; that is, conic, semicircular and square were considered. The influence of the trailing edge shapes were discussed together with experimental data available in the literature. The presented results show that the trailing edge geometries influence on the nucleation process, the droplet size, wetness fraction, the shock waves structure generated at trailing edge and its angles, the flow angle, the entropy generation and flow mixing in the wake. The cascade loss coefficients were calculated for the low inlet superheat case and for the high inlet superheat case. The presented results demonstrated that the losses that occur due to the irreversible heat and mass transfer during the condensation process were also influenced due to the trailing edge shapes.


2019 ◽  
Vol 196 ◽  
pp. 1089-1104 ◽  
Author(s):  
Hongbing Ding ◽  
Yiming Li ◽  
Esmail Lakzian ◽  
Chuang Wen ◽  
Chao Wang

2009 ◽  
Vol 45 (9) ◽  
pp. 1185-1198 ◽  
Author(s):  
A. R. Teymourtash ◽  
Javad Abolfazli Esfahani ◽  
S. A. Mousavi Shaegh

2016 ◽  
Vol 86 ◽  
pp. 1123-1133 ◽  
Author(s):  
Ahmed S. Shehata ◽  
Khalid M. Saqr ◽  
Qing Xiao ◽  
Mohamed F. Shehadeh ◽  
Alexander Day

Sign in / Sign up

Export Citation Format

Share Document