scholarly journals Scheduling isolated power systems considering electric vehicles and primary frequency response

Energy ◽  
2019 ◽  
Vol 168 ◽  
pp. 1192-1207 ◽  
Author(s):  
Miguel Carrión ◽  
Ruth Domínguez ◽  
Miguel Cañas-Carretón ◽  
Rafael Zárate-Miñano
2016 ◽  
Vol 88 ◽  
pp. 985-990 ◽  
Author(s):  
Fei Teng ◽  
Yunfei Mu ◽  
Hongjie Jia ◽  
Jianzhong Wu ◽  
Pingliang Zeng ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6485
Author(s):  
Melanie Hoffmann ◽  
Harold R. Chamorro ◽  
Marc René Lotz ◽  
José M. Maestre ◽  
Kumars Rouzbehi ◽  
...  

The increasing deployment of wind power is reducing inertia in power systems. High-voltage direct current (HVDC) technology can help to improve the stability of AC areas in which a frequency response is required. Moreover, multi-terminal DC (MTDC) networks can be optimized to distribute active power to several AC areas by droop control setting schemes that adjust converter control parameters. To this end, in this paper, particle swarm optimization (PSO) is used to improve the primary frequency response in AC areas considering several grid limitations and constraints. The frequency control uses an optimization process that minimizes the frequency nadir and the settling time in the primary frequency response. Secondly, another layer is proposed for the redistribution of active power among several AC areas, if required, without reserving wind power capacity. This method takes advantage of the MTDC topology and considers the grid code limitations at the same time. Two scenarios are defined to provide grid code-compliant frequency control.


2013 ◽  
Vol 4 (2) ◽  
pp. 1142-1150 ◽  
Author(s):  
Yunfei Mu ◽  
Jianzhong Wu ◽  
Janaka Ekanayake ◽  
Nick Jenkins ◽  
Hongjie Jia

2018 ◽  
Vol 33 (2) ◽  
pp. 1811-1823 ◽  
Author(s):  
Tat Kei Chau ◽  
Samson Shenglong Yu ◽  
Tyrone Lucius Fernando ◽  
Herbert Ho-Ching Iu ◽  
Michael Small

Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 143-157
Author(s):  
Jovi Atkinson ◽  
Ibrahim M. Albayati

The operation and the development of power system networks introduce new types of stability problems. The effect of the power generation and consumption on the frequency of the power system can be described as a demand/generation imbalance resulting from a sudden increase/decrease in the demand and/or generation. This paper investigates the impact of a loss of generation on the transient behaviour of the power grid frequency. A simplified power system model is proposed to examine the impact of change of the main generation system parameters (system inertia, governor droop setting, load damping constant, and the high-pressure steam turbine power fraction), on the primary frequency response in responding to the disturbance of a 1.32 GW generation loss on the UK power grid. Various rates of primary frequency responses are simulated via adjusting system parameters of the synchronous generators to enable the controlled generators providing a fast-reliable primary frequency response within 10 s after a loss of generation. It is concluded that a generation system inertia and a governor droop setting are the most dominant parameters that effect the system frequency response after a loss of generation. Therefore, for different levels of generation loss, the recovery rate will be dependent on the changes of the governor droop setting values. The proposed model offers a fundamental basis for a further investigation to be carried on how a power system will react during a secondary frequency response.


Sign in / Sign up

Export Citation Format

Share Document