scholarly journals Grid Code-Dependent Frequency Control Optimization in Multi-Terminal DC Networks

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6485
Author(s):  
Melanie Hoffmann ◽  
Harold R. Chamorro ◽  
Marc René Lotz ◽  
José M. Maestre ◽  
Kumars Rouzbehi ◽  
...  

The increasing deployment of wind power is reducing inertia in power systems. High-voltage direct current (HVDC) technology can help to improve the stability of AC areas in which a frequency response is required. Moreover, multi-terminal DC (MTDC) networks can be optimized to distribute active power to several AC areas by droop control setting schemes that adjust converter control parameters. To this end, in this paper, particle swarm optimization (PSO) is used to improve the primary frequency response in AC areas considering several grid limitations and constraints. The frequency control uses an optimization process that minimizes the frequency nadir and the settling time in the primary frequency response. Secondly, another layer is proposed for the redistribution of active power among several AC areas, if required, without reserving wind power capacity. This method takes advantage of the MTDC topology and considers the grid code limitations at the same time. Two scenarios are defined to provide grid code-compliant frequency control.

2016 ◽  
Vol 88 ◽  
pp. 985-990 ◽  
Author(s):  
Fei Teng ◽  
Yunfei Mu ◽  
Hongjie Jia ◽  
Jianzhong Wu ◽  
Pingliang Zeng ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6178
Author(s):  
Changgang Li ◽  
Zhi Hang ◽  
Hengxu Zhang ◽  
Qi Guo ◽  
Yihua Zhu ◽  
...  

Accompanying the continuous increase in wind power penetration, the power system inertia is reduced, and the system frequency regulation performance deteriorates. Wind turbine generators are required to participate in primary frequency regulation (PFR) to support system frequency. Here, the PFR capability of the widely-used doubly-fed induction generator (DFIG) is evaluated to estimate the participation of the DFIG in system frequency control. The frequency regulation model of the DFIG is established and briefly discussed. The equivalent PFR droop coefficient is then deduced from the model using a small signal increment method to evaluate the DFIG’s PFR capability. Key factors affecting the equivalent droop coefficient are studied, and the droop control is optimized to keep the equivalent droop coefficient in the desired range. The proposed method is verified utilizing a provincial power grid model of China.


Energy ◽  
2019 ◽  
Vol 168 ◽  
pp. 1192-1207 ◽  
Author(s):  
Miguel Carrión ◽  
Ruth Domínguez ◽  
Miguel Cañas-Carretón ◽  
Rafael Zárate-Miñano

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4060 ◽  
Author(s):  
Choi ◽  
Kook ◽  
Yu

As the battery energy storage system (BESS) has been considered to be a solution to the diminished performance of frequency response in the Korean power system, in which renewable energy resources (RESs) are expected to increase rapidly, this paper proposes a control strategy for providing both the virtual inertia and primary frequency response considering the MW-scale BESS installed by the Korea Electricity Power Corporation (KEPCO). The benefit of such a fast and flexible BESS can be maximized by the proposed control strategy for making it provide both the inertia and primary frequency response, which would be deficit with the increased RES. In the proposed control strategy, the state of charge (SOC) is maintained in the specific range in which the life cycle is maximized, the interference of SOC recovery by frequency control is minimized, the responding capacity for providing the virtual inertia response is maximized during the transient period, and the performance requirements for frequency response are satisfied. The effectiveness of the proposed strategy is verified by both Korean power system model-based simulation and on-site operations.


2019 ◽  
Vol 9 (9) ◽  
pp. 1784 ◽  
Author(s):  
Sun ◽  
Chen ◽  
Lv ◽  
Mei ◽  
Zang ◽  
...  

With the large-scale integration of renewable energy sources (e.g., wind power), the system inertial response and primary frequency regulation are affected. The virtual synchronous generator technology, which makes it possible for wind power units to adjust the frequency, provides a new way of approaching this problem. In this paper, we set up the related constraints that fit the optimal dispatch framework with a primary reserve representing the primary frequency response between the conventional synchronous generator and the wind power units, and the technical parameters of the virtual synchronous generator. Meanwhile, we use the robust day-ahead optimization dispatch model considering the wind power integrated primary frequency control in the real-time operation with the scenario of the wind power output showing the uncertainty of wind power. Based on the model, we identify the key set using an iterative method and obtain the maximum power loss. Through the proposed model, we could provide the day-ahead unit output and real-time primary reserve, thus ensuring the reliable operation of the system. Finally, the effectiveness of the proposed method is verified by a computational experiment.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2288
Author(s):  
Zhenghao Wang ◽  
Yonghui Liu ◽  
Zihao Yang ◽  
Wanhao Yang

In recent years, wind power systems have been used extensively, which not only improve the efficiency of current conventional power generation systems, but also can save traditional fossil fuel resources. However, considering the instability of wind power, after being grid connected, it can easily cause an impact on the stability of the grid operation. Considering the above problems, this paper considers to make full use of the energy storage part of electric vehicles (EVs) to increase the stability of grid operation. Based on the mathematical model, this paper studies the load frequency control (LFC) problem of a multi-region interconnected power system with wind power and EVs. First, since the system states are difficult to be monitored, a state observer is designed to estimate the state. Based on this, the integral sliding mode controller (SMC) is designed to realize the LFC of the interconnected power system. Meanwhile, to obtain better control performance, this paper further analyzes and optimizes the controller parameters based on Lyapunov stability theory. At last, simulations are carried out for the power systems with two regions in Simulink. The results show that the designed controllers are effective to compensate the load demand disturbances. In addition, it is demonstrated that the battery storage of EVs can play the role of peak-shaving and valley-filling in LFC.


2018 ◽  
Vol 33 (2) ◽  
pp. 1811-1823 ◽  
Author(s):  
Tat Kei Chau ◽  
Samson Shenglong Yu ◽  
Tyrone Lucius Fernando ◽  
Herbert Ho-Ching Iu ◽  
Michael Small

Sign in / Sign up

Export Citation Format

Share Document