Assessment of the dimples as passive boundary layer control technique for laminar airfoils operating at wind turbine blades root region typical Reynolds numbers

Energy ◽  
2019 ◽  
Vol 170 ◽  
pp. 102-111 ◽  
Author(s):  
Valerio D'Alessandro ◽  
Giacomo Clementi ◽  
Luca Giammichele ◽  
Renato Ricci
2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


1985 ◽  
Vol 107 (3) ◽  
pp. 342-347 ◽  
Author(s):  
B. Bar-Haim ◽  
D. Weihs

The drag of axisymmetric bodies can be reduced by boundary-layer suction, which delays transition and can control separation. In this study, boundary-layer transition is delayed by applying a distributed suction technique. Optimization calculations were performed to define the minimal drag bodies at Reynolds numbers of 107 and 108. The saving in drag relative to optimal bodies with non-controlled boundary layers is shown to be 18 and 78 percent, at Reynolds numbers of 107 and 108, respectively.


2009 ◽  
Vol 23 (03) ◽  
pp. 505-508 ◽  
Author(s):  
RUI YANG ◽  
REN-NIAN LI ◽  
WEI HAN ◽  
DE-SHUN LI

The flow field past the rotating blade of a horizontal axial wind turbine has been modeled with a full 3–D steady–RANS approach. Flow computations have been performed using the commercial finite–volume solver Fluent. The NREL phase VI wind turbine blade sections from the 3–D rotating geometry were chosen and the corresponding 2–D flow computations have been carried out for comparison with different angles of attack and in stalled conditions. The simulation results are analyzed. The main features of the boundary layer flow are described, for both the rotating blade and the corresponding 2–D profiles. Computed pressure distributions and aerodynamic coefficients show evidence of less lift losses after separation in the 3–D rotating case, mostly for the inward sections of the blade and the highest angles of attack, which is in agreement with the literature.


2007 ◽  
Vol 75 ◽  
pp. 012031 ◽  
Author(s):  
Carlo E Carcangiu ◽  
Jens N Sørensen ◽  
Francesco Cambuli ◽  
Natalino Mandas

2016 ◽  
Vol 1 (2) ◽  
pp. 89-100 ◽  
Author(s):  
Iván Herráez ◽  
Buşra Akay ◽  
Gerard J. W. van Bussel ◽  
Joachim Peinke ◽  
Bernhard Stoevesandt

Abstract. The root flow of wind turbine blades is subjected to complex physical mechanisms that influence significantly the rotor aerodynamic performance. Spanwise flows, the Himmelskamp effect, and the formation of the root vortex are examples of interrelated aerodynamic phenomena that take place in the blade root region. In this study we address those phenomena by means of particle image velocimetry (PIV) measurements and Reynolds-averaged Navier–Stokes (RANS) simulations. The numerical results obtained in this study are in very good agreement with the experiments and unveil the details of the intricate root flow. The Himmelskamp effect is shown to delay the stall onset and to enhance the lift force coefficient Cl even at moderate angles of attack. This improvement in the aerodynamic performance occurs in spite of the negative influence of the mentioned effect on the suction peak of the involved blade sections. The results also show that the vortex emanating from the spanwise position of maximum chord length rotates in the opposite direction to the root vortex, which affects the wake evolution. Furthermore, the aerodynamic losses in the root region are demonstrated to take place much more gradually than at the tip.


2016 ◽  
Author(s):  
I. Herráez ◽  
B. Akay ◽  
G. J. W. van Bussel ◽  
J. Peinke ◽  
B. Stoevesandt

Abstract. The root flow of wind turbine blades is subjected to complex physical mechanisms that influence significantly the rotor aerodynamic performance. Spanwise flows, the Himmelskamp effect and the formation of the root vortex are examples of interrelated aerodynamic phenomena observed in the blade root region. In this study we address those phenomena by means of Particle Image Velocimetry (PIV) measurements and Reynolds Averaged Navier–Stokes (RANS) simulations. The numerical results obtained in this study are in very good agreement with the experiments and unveil the details of the intricate root flow. The Himmelskamp effect is shown to delay the stall onset and enhance the lift force coefficient Cl even at a moderate angle of attack (AoA ≈ 13°). The results also show that the vortex emanating from the spanwise position of maximum chord length rotates in the opposite direction of the root vortex, what affects the wake evolution.


2017 ◽  
Vol 867 ◽  
pp. 254-260 ◽  
Author(s):  
Vivek V. Kumar ◽  
Dilip A. Shah

Due to the rapid depletion of conventional energy resources like fossil fuels and their harmful effects on the environment, there is an urgent need to seek alternative and sustainable energy sources. Wind energy is considered as one of the efficient source of energy which can be converted to useful form of energy like electrical energy. Though the field of wind engineering has developed in the recent era there is still scope for improvement in the effective utilization of energy. Energy efficiency in wind turbine is largely determined by the aerodynamics of the turbine blades and the characteristics of the turbulent fluid flow. The objective of this paper is to have a review on the improvement of Horizontal Axis Wind Turbine (HAWT) blade design by incorporating biomimetics into blades. Biomimetics is the field of science in which we adapt designs from nature to solve modern problems. The morphology of the wing-like flipper of the humpback whale (Megaptera novaeangliae) has potential for aerodynamic applications. Instead of straight leading edges like that of conventional hydrofoils, the humpback whale flipper has a number of sinusoidal rounded bumps, called tubercles arranged periodically along the leading edge. The presence of tubercles modifies the flow over the blade surface, creating vortices between the tubercles. These vortices interact with the flow over the tubercle and accelerate that flow, helping to maintain a partially attached boundary layer. This aerodynamic effect can delay stall to higher angles of attack, increase lift and reduce drag compared to the post-stall condition of conventional airfoils. The modified airfoil is characterized by a superior lift/drag ratio (L/D ratio) due to greater boundary layer attachment from vortices energizing the boundary layer.


PAMM ◽  
2004 ◽  
Vol 4 (1) ◽  
pp. 432-433 ◽  
Author(s):  
Horia Dumitrescu ◽  
Vladimir Cardos

Sign in / Sign up

Export Citation Format

Share Document