blade root
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 48)

H-INDEX

11
(FIVE YEARS 5)

2021 ◽  
Vol 11 (24) ◽  
pp. 12008
Author(s):  
Hadi Dastani ◽  
Daniele Botto ◽  
Matteo Glorioso

this paper focuses on the contact characteristics of the blade root joints subjected to the dry friction damping under periodic excitation. The numerical method and experimental procedure are combined to trace the contact behavior in the nonlinear vibration conditions. In experimental procedure, a novel excitation method alongside the accurate measurements is used to determine the frequencies of the blade under different axial loads. In numerical simulations, local behavior of contact areas is investigated using the reduction method as a reliable and fast solver. Subsequently, by using both experimental measurements and numerical outcomes in a developed code, the global stiffness matrix is calculated. This leads to find the normal and tangential stiffness in the contact areas of a dovetail blade root joints. The results indicate that the proposed method can provide an accurate quantitative assessment for investigation the dynamic response of the joints with focusing the contact areas.


2021 ◽  
Vol 11 (22) ◽  
pp. 10764
Author(s):  
Hyeon-Gi Moon ◽  
Sunho Park ◽  
Kwangtae Ha ◽  
Jae-Ho Jeong

Thick airfoils are conventionally adopted in the blade root region of a wind turbine to ensure structural safety under extreme conditions, despite the resulting power loss. To prevent this loss, a passive flow control device known as a vortex generator (VG) is installed at the starting point of the stall to control the flow field near the wall of the suction surface. In this study, we used computational fluid dynamics (CFD) to investigate the aerodynamic characteristics induced as a result of the shape and layout of the VG on a multi-MW wind turbine blade. The separated and vortical flow behavior on the suction surface of the wind turbine blade equipped with VGs was captured by the Reynolds-averaged Navier–Stokes (RANS) steady-flow simulation. The parametric sensitivity study of the VG shape parameters such as the chord-wise length, height, and interval of the fair of VGs was conducted using thick DU airfoil on the blade inboard area. Based on these results, the response surface method (RSM) was used to investigate the influence of the design parameters of the VG. Based on the CFD results, the VG design parameters were selected by considering the lift coefficient and vorticity above the trailing edge. The maximum vorticity from the trailing edge of the selected VG and the lift coefficient were 55.7% and 0.42% higher, respectively, than the average. The selected VG design and layout were adopted for a multi-MW wind turbine and reduced stall occurrence in the blade root area, as predicted by the simulation results. The VG improved the aerodynamic performance of the multi-MW wind turbine by 2.8% at the rated wind speed.


2021 ◽  
Author(s):  
Anand Natarajan

Abstract. Present verification of the fatigue life margins on wind turbine structures utilizes damage equivalent load (DEL) computations over limited time duration. In this article, a procedure to determine long term fatigue damage and remaining life is presented as a combination of stochastic extrapolation of the 10-minute DEL to determine its probability of exceedance and through computationally fast synthesis of DELs using level-crossings of a Gaussian process. Both the synthesis of DELs and long-term stochastic extrapolation are validated using measured loads from a wind farm. The extrapolation for the blade root flap and tower base fore-aft damage equivalent moment is presented using a three-parameter Weibull distribution, whereby the long term damage equivalent load levels are forecast for both simulated and measured values. The damage equivalent load magnitude at a selected target probability of exceedance provides an indicator of the integrity of the structure for the next year. The extrapolated damage equivalent load over a year is validated using measured multi-year damage equivalent loads from a turbine in the Lillgrund wind farm, which is subject to wakes. The simulation of damage equivalent loads using the method of level crossings of a Gaussian process is shown to be able to reconstruct the damage equivalent load for both blade root and tower base moments. The prediction of the tower base fore-aft DEL is demonstrated to be feasible when using the Vanmarcke correction for very-narrow band processes. The combined method of fast damage equivalent load computations and stochastic extrapolation to the next year, allows a quick and accurate forecasting of structural integrity of operational wind turbines.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bofeng Xu ◽  
Zhen Li ◽  
Zixuan Zhu ◽  
Xin Cai ◽  
Tongguang Wang ◽  
...  

To cope with the future challenges to the blade that will be introduced by the development of extreme-scale wind turbines, this study focuses on the optimization design of the aerodynamic shape of a downwind blade via the inverse design method. Moreover, the genetic algorithm is used to optimize the chord, twist angle, and pre-bending parameters of the blade to maximize the energy production of the rotor and minimize the flapping bending moment of the blade root. By taking a 5-MW wind turbine as the optimization object, the two-objective optimization design of the downwind blade is carried out, and Pareto optimal solutions in line with the expectations are obtained. After analyzing four representatives of the Pareto optimal solutions, while a more ideal solution is found to sacrifice 9.41% of the energy production of the rotor, the flapping bending moment of the blade root is reduced by 42.92%, thereby achieving the lightweight optimization design of an extreme-scale wind turbine blade. Furthermore, based on the selected four sets of blades, the influence mechanisms of the chord, twist angle, and pre-bending on the optimization goal are analyzed, and it is found that the pre-bending parameter has the greatest influence on the two optimization goals.


2021 ◽  
Author(s):  
Luca Pustina ◽  
Claudio Pasquali ◽  
Jacopo Serafini ◽  
Claudio Lugni ◽  
Massimo Gennaretti

Abstract Among the renewable energy technologies, offshore wind energy is expected to provide a significant contribution for the achievement of the European Renewable Energy (RE) targets for the next future. In this framework, the increase of generated power combined with the alleviation of vibratory loads achieved by application of suitable advanced control systems can lead to a beneficial LCOE (Levelized Cost Of Energy) reduction. This paper defines a control strategy for increasing floating offshore wind turbine lifetime through the reduction of vibratory blade and hub loads. To this purpose a Proportional-Integral (PI) controller based on measured blade-root bending moment feedback provides the blade cyclic pitch to be actuated. The proportional and integral gain matrices are determined by an optimization procedure whose objective is the alleviation of the vibratory loads due to a wind distributed linearly on the rotor disc. This control synthesis process relies on a linear, state-space, reduced-order model of the floating offshore wind turbine derived from aero-hydroelastic simulations provided by the open-source tool OpenFAST. In addition to the validation of the proposed controller, the numerical investigation based on OpenFAST predictions examines also the corresponding control effort, influence on platform dynamics and expected blade lifetime extension. The outcomes show that, as a by-product of the alleviation of the vibratory out-of-plane bending moment at the blade root, significant reductions of both cumulative blade lifetime damage and sway and roll platform motion are achieved, as well. The maximum required control power is less than 1% of the generated power.


2021 ◽  
Vol 6 (3) ◽  
pp. 917-933 ◽  
Author(s):  
Kenneth Loenbaek ◽  
Christian Bak ◽  
Michael McWilliam

Abstract. A novel wind turbine rotor optimization methodology is presented. Using an assumption of radial independence it is possible to obtain an optimal relationship between the global power (CP) and load coefficient (CT, CFM) through the use of Karush–Kuhn–Tucker (KKT) multipliers, leaving an optimization problem that can be solved at each radial station independently. It allows solving load constraint power and annual energy production (AEP) optimization problems where the optimization variables are only the KKT multipliers (scalars), one for each of the constraints. For the paper, two constraints, namely the thrust and blade root flap moment, are used, leading to two optimization variables. Applying the optimization methodology to maximize power (P) or annual energy production (AEP) for a given thrust and blade root flap moment, but without a cost function, leads to the same overall result with the global optimum being unbounded in terms of rotor radius (R̃) with a global optimum being at R̃→∞. The increase in power and AEP is in this case ΔP=50 % and ΔAEP=70 %, with a baseline being the Betz optimum rotor. With a simple cost function and with the same setup of the problem, a power-per-cost (PpC) optimization resulted in a power-per-cost increase of ΔPpC=4.2 % with a radius increase of ΔR=7.9 % as well as a power increase of ΔP=9.1 %. This was obtained while keeping the same flap moment and reaching a lower thrust of ΔT=-3.8 %. The equivalent for AEP-per-cost (AEPpC) optimization leads to increased cost efficiency of ΔAEPpC=2.9 % with a radius increase of ΔR=17 % and an AEP increase of ΔAEP=13 %, again with the same, maximum flap moment, while the maximum thrust is −9.0 % lower than the baseline.


Sign in / Sign up

Export Citation Format

Share Document