Optimal investment selection of regional integrated energy system under multiple strategic objectives portfolio

Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 119409
Author(s):  
Liqi Yi ◽  
Tao Li ◽  
Ting Zhang
2021 ◽  
Vol 13 (5) ◽  
pp. 2615
Author(s):  
Junqing Wang ◽  
Wenhui Zhao ◽  
Lu Qiu ◽  
Puyu Yuan

Since application of integrated energy systems (IESs) has formed a markedly increasing trend recently, selecting an appropriate integrated energy system construction scheme becomes essential to the energy supplier. This paper aims to develop a multi-criteria decision-making model for the evaluation and selection of an IES construction scheme equipped with smart energy management and control platform. Firstly, a comprehensive evaluation criteria system including economy, energy, environment, technology and service is established. The evaluation criteria system is divided into quantitative criteria denoted by interval numbers and qualitative criteria. Secondly, single-valued neutrosophic numbers are adopted to denote the qualitative criteria in the evaluation criteria system. Thirdly, in order to accommodate mixed data types consisting of both interval numbers and single-valued neutrosophic numbers, the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method is extended into a three-stage technique by introducing a fusion coefficient μ. Then, a real case in China is evaluated through applying the proposed method. Furthermore, a comprehensive discussion is made to analyze the evaluation result and verify the reliability and stability of the method. In short, this study provides a useful tool for the energy supplier to evaluate and select a preferred IES construction scheme.


2021 ◽  
Author(s):  
Henning Francke

Abstract A geothermal heat plant is a not only a source of heat, but, in general, also a sink for relevant amounts of electricity, consumed mainly by the pump(s). This electricity demand is usually not given much attention although being decisive for operation costs, but also offering chances for demand side management as a variable consumer. From the perspective of an integrated energy system, geothermal installations basically move energy from the electricity sector into the heat sector, similar to compression heat pumps. The main heat pump performance indicator is the ratio between invested energy and useful heat, the COP. This paper transfers the COP concept to geothermal sites, by defining and determining the quantity for a selection of mostly German geothermal sites.


2021 ◽  
Vol 256 ◽  
pp. 02007
Author(s):  
Zheng Wang ◽  
Xuxia Li ◽  
Yao Wang ◽  
Yan Liang ◽  
Yingying Hu ◽  
...  

At present, most comprehensive energy planning methods aim at economy. A distributed integrated energy system planning method considering reliability and integrated demand response is proposed. This method considers that IDR can effectively realize the peak valley cutting of load characteristics, improve the system economy, and increase the reliability constraint penalty cost to make it more realistic. The example results show that the proposed method can consider the economy and reliability of configuration results under different conditions, and realize the selection of equipment.


Author(s):  
Sai Liu ◽  
Cheng Zhou ◽  
Haomin Guo ◽  
Qingxin Shi ◽  
Tiancheng E. Song ◽  
...  

AbstractAs a key component of an integrated energy system (IES), energy storage can effectively alleviate the problem of the times between energy production and consumption. Exploiting the benefits of energy storage can improve the competitiveness of multi-energy systems. This paper proposes a method for day-ahead operation optimization of a building-level integrated energy system (BIES) considering additional potential benefits of energy storage. Based on the characteristics of peak-shaving and valley-filling of energy storage, and further consideration of the changes in the system’s load and real-time electricity price, a model of additional potential benefits of energy storage is developed. Aiming at the lowest total operating cost, a bi-level optimal operational model for day-ahead operation of BIES is developed. A case analysis of different dispatch strategies verifies that the addition of the proposed battery scheduling strategy improves economic operation. The results demonstrate that the model can exploit energy storage’s potential, further optimize the power output of BIES and reduce the economic cost.


Sign in / Sign up

Export Citation Format

Share Document