Influence of Control Strategy on Seasonal Coefficient of Performance for a Heat Pump with Low-Temperature Heat Storage in the Geographical Conditions of Central Europe

Energy ◽  
2021 ◽  
pp. 121276
Author(s):  
Libor Kudela ◽  
Michal Špiláček ◽  
Jiří Pospíšil
2021 ◽  
Vol 141 ◽  
pp. 110824
Author(s):  
Yongliang Shen ◽  
Shuli Liu ◽  
Abdur Rehman Mazhar ◽  
Xiaojing Han ◽  
Liu Yang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


Heat Pumps ◽  
1990 ◽  
pp. 807-815
Author(s):  
Tadaaki Tanii ◽  
Masaki Minemoto ◽  
Yoshimasa Ando

2020 ◽  
Vol 12 (19) ◽  
pp. 8178
Author(s):  
Fahid Riaz ◽  
Kah Hoe Tan ◽  
Muhammad Farooq ◽  
Muhammad Imran ◽  
Poh Seng Lee

Low-grade heat is abundantly available as solar thermal energy and as industrial waste heat. Non concentrating solar collectors can provide heat with temperatures 75–100 °C. In this paper, a new system is proposed and analyzed which enhances the electrical coefficient of performance (COP) of vapour compression cycle (VCC) by incorporating low-temperature heat-driven ejectors. This novel system, ejector enhanced vapour compression refrigeration cycle (EEVCRC), significantly increases the electrical COP of the system while utilizing abundantly available low-temperature solar or waste heat (below 100 °C). This system uses two ejectors in an innovative way such that the higher-pressure ejector is used at the downstream of the electrically driven compressor to help reduce the delivery pressure for the electrical compressor. The lower pressure ejector is used to reduce the quality of wet vapour at the entrance of the evaporator. This system has been modelled in Engineering Equation Solver (EES) and its performance is theoretically compared with conventional VCC, enhanced ejector refrigeration system (EERS), and ejection-compression system (ECS). The proposed EEVCRC gives better electrical COP as compared to all the three systems. The parametric study has been conducted and it is found that the COP of the proposed system increases exponentially at lower condensation temperature and higher evaporator temperature. At 50 °C condenser temperature, the electrical COP of EEVCRC is 50% higher than conventional VCC while at 35 °C, the electrical COP of EEVCRC is 90% higher than conventional VCC. For the higher temperature heat source, and hence the higher generator temperatures, the electrical COP of EEVCRC increases linearly while there is no increase in the electrical COP for ECS. The better global COP indicates that a small solar collector will be needed if this system is driven by solar thermal energy. It is found that by using the second ejector at the upstream of the electrical compressor, the electrical COP is increased by 49.2% as compared to a single ejector system.


Author(s):  
Shuichi Umezawa ◽  
Haruo Amari ◽  
Hiroyuki Shimada ◽  
Takashi Matsuhisa ◽  
Ryo Fukushima ◽  
...  

This paper reports application study of newly developed turbo heat pump for 130 degrees Celsius (°C) water for an industrial process in an actual factory. The heat pump is characterized by high efficiency and large heat output, by using a state-of-the-art turbo compressor. The heat pump requires a low temperature heat source in order to achieve high efficiency. The heat demand is for several drying furnaces in the factory, which requires producing hot air of 120 °C. The heat exchanger was designed to produce the hot air. Experiments were conducted to confirm the performance of the heat exchanger under a reduced size of the heat exchanger. Low temperature heat sources are from both exhaust gas of the drying furnaces and that of an annealing furnace. The heat exchangers were also designed to recover heat of the exhaust gas from the two types of furnace. A thermal storage tank was prepared for the low temperature heat source, and for adjusting the time difference between the heat demand and the low temperature heat source. The size of the tank was determined by considering the schedule of furnaces operations. As a result of the present study, it was confirmed that the heat pump was able to satisfy the present heat demand while retaining high efficiency. Primary energy consumption and CO2 emission of the heat pump were calculated on the basis of the present results in order to compare them with those of the boilers.


2017 ◽  
Vol 42 (3) ◽  
pp. 1132-1138 ◽  
Author(s):  
Junling Yang ◽  
Chong Zhang ◽  
Xuejun Lin ◽  
Zhentao Zhang ◽  
Luwei Yang

Sign in / Sign up

Export Citation Format

Share Document