Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm

Energy ◽  
2021 ◽  
pp. 122715
Author(s):  
Xiongmin Tang ◽  
Zhengshuo Li ◽  
Xuancong Xu ◽  
Zhijun Zeng ◽  
Tianhong Jiang ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3847 ◽  
Author(s):  
Panpan Mei ◽  
Lianghong Wu ◽  
Hongqiang Zhang ◽  
Zhenzu Liu

Due to the significant uncertainty of charging time and charging power consumption, the large increase in plug-in electric vehicles (PEVs) may create a major influences on the power system: According to people’s living habits, PEVs are basically charged during peak load periods (after work). Once PEVs continue the random charging behavior, there will be a higher difference of peak-valley and bigger burden on the grid. A new strategy is put forward for dynamic economic/emission dispatch (DEED) with the consideration of PEVs for the purpose to shave the peak and fill the valley in this paper, and the influences brought from different loads of grid-to-vehicle (G2V) and vehicle-to-grid (V2G) on DEED problem are discussed. The problem to be solved is a challenging multi-objective non-linear problem. By taking advantage of the differential evolution (DE) algorithms and a newly developed crisscross optimization algorithm, a new multi-objective hybrid optimization algorithm is put forward to deal with the problem including effectively dealing with the inequality and equality constraints. A case study is presented to show the feasibility and effectiveness of the put forward method. The analysis results demonstrate that the put forward algorithm could effectively solve DEED problem, showing that the resulting approach of peak shaving and valley filling could significantly save economic costs and reduce emissions under the same load.


Author(s):  
M. F. Mehdi ◽  
A. Ahmad ◽  
S. S. Ul Haq ◽  
M. Saqib ◽  
M. F. Ullah

Introduction. Dynamic Economic Emission Dispatch is the extended version of the traditional economic emission dispatch problem in which ramp rate is taken into account for the limit of generators in a power network. Purpose. Dynamic Economic Emission Dispatch considered the treats of economy and emissions as competitive targets for optimal dispatch problems, and to reach a solution it requires some conflict resolution. Novelty. The decision-making method to solve the Dynamic Economic Emission Dispatch problem has a goal for each objective function, for this purpose, the multi-objective problem is transformed into single goal optimization by using the weighted sum method and then control/solve by Whale Optimization Algorithm. Methodology. This paper presents a newly developed metaheuristic technique based on Whale Optimization Algorithm to solve the Dynamic Economic Emission Dispatch problem. The main inspiration for this optimization technique is the fact that metaheuristic algorithms are becoming popular day by day because of their simplicity, no gradient information requirement, easily bypass local optima, and can be used for a variety of other problems. This algorithm includes all possible factors that will yield the minimum cost and emissions of a Dynamic Economic Emission Dispatch problem for the efficient operation of generators in a power network. The proposed approach performs well to perform in diverse problem and converge the solution to near best optimal solution. Results. The proposed strategy is validated by simulating on MATLAB® for 5 IEEE standard test system. Numerical results show the capabilities of the proposed algorithm to establish an optimal solution of the Dynamic Economic Emission Dispatch problem in a several runs. The proposed algorithm shows good performance over the recently proposed algorithms such as Multi-Objective Neural Network trained with Differential Evolution, Particle swarm optimization, evolutionary programming, simulated annealing, Pattern search, multi-objective differential evolution, and multi-objective hybrid differential evolution with simulated annealing technique.


Sign in / Sign up

Export Citation Format

Share Document