Three-dimensional transient half-space dynamics using the dual reciprocity boundary element method

2008 ◽  
Vol 32 (7) ◽  
pp. 597-618 ◽  
Author(s):  
Andrej Tosecký ◽  
Yvona Koleková ◽  
Günther Schmid ◽  
Valerij Kalinchuk
2015 ◽  
Vol 12 (01) ◽  
pp. 1350090 ◽  
Author(s):  
Haijun Wu ◽  
Yijun Liu ◽  
Weikang Jiang ◽  
Wenbo Lu

A high-frequency fast multipole boundary element method (FMBEM) based on the Burton–Miller formulation is proposed for three-dimensional acoustic wave problems over an infinite plane with impedance boundary conditions. The Green's function for the sound propagation over an impedance plane is employed explicitly in the boundary integral equation (BIE). To deal with the integral appearing in the half-space Green's function, the downward pass in the FMBEM is divided into two parts to compute contributions from the real domain to the real and image domains, respectively. A piecewise analytical method is proposed to compute the moment-to-local (M2L) translator from the real domain to the image domain accurately. An algorithm based on the multi-level tree structure is designed to compute the M2L translators efficiently. Correspondingly, the direct coefficient can also be computed efficiently by taking advantage of the algorithm of the efficient M2L. A flexible generalized minimal residual (fGMRES) is applied to accelerating the solution when the convergence is very slow. Numerical examples are presented to demonstrate the accuracy and efficiency of the developed FMBEM. Good solutions and high acceleration ratios compared with the conventional boundary element method clearly show the potential of the FMBEM for large-scale 3D acoustic wave problems over an infinite impedance plane which are of practical significance.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2012 ◽  
Vol 9 (1) ◽  
pp. 142-146
Author(s):  
O.A. Solnyshkina

In this work the 3D dynamics of two immiscible liquids in unbounded domain at low Reynolds numbers is considered. The numerical method is based on the boundary element method, which is very efficient for simulation of the three-dimensional problems in infinite domains. To accelerate calculations and increase the problem size, a heterogeneous approach to parallelization of the computations on the central (CPU) and graphics (GPU) processors is applied. To accelerate the iterative solver (GMRES) and overcome the limitations associated with the size of the memory of the computation system, the software component of the matrix-vector product


2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


Sign in / Sign up

Export Citation Format

Share Document