Acoustic topology optimization of porous material distribution based on an adjoint variable FMBEM sensitivity analysis

2019 ◽  
Vol 99 ◽  
pp. 60-75 ◽  
Author(s):  
Wenchang Zhao ◽  
Changjun Zheng ◽  
Haibo Chen
Author(s):  
Wei Song ◽  
Hae Chang Gea ◽  
Bin Zheng

Conventionally, design domain of topology optimization is predefined and is not adjusted in the design optimization process since designers are required to specify the design domain in advance. However, it is difficult for a fixed design domain to satisfy design requirements such as domain sizing adjustment or boundaries change. In this paper, Domain Composition Method (DCM) for structural optimization is presented and it deals with the design domain adjustment and the material distribution optimization in one framework. Instead of treating design domain as a whole, DCM divides domain into several subdomains. Additional scaling factors and subdomain transformations are applied to describe changes between different designs. It then composites subdomains and solve it as a whole in the updated domain. Based on the domain composition, static analysis with DCM and sensitivity analysis are derived. Consequently, the design domain and the topology of the structure are optimized simultaneously. Finally, the effectiveness of the proposed DCM for structural optimization is demonstrated through different numerical examples.


2013 ◽  
Vol 61 (1) ◽  
pp. 201-210 ◽  
Author(s):  
R. Studziński ◽  
Z. Pozorski ◽  
A. Garstecki

Abstract The paper addresses the problems of the sensitivity analysis and optimal design of multi-span sandwich panels with a soft core and flat thin steel facings. The response functional is formulated in a general form allowing wide practical applications. Sensitivity gradients of this functional with respect to dimensional, material and support parameters are derived using adjoint variable method. These operators account for the jump of the slope of a Timoshenko beam or a Reissner plate at the position of concentrated active load or reaction, thus extending the sensitivity operators known in literature. The jump of slope is the effect of shear deformation of the core. Special attention is focussed on sensitivity and optimisation allowing for variable support position and stiffness, because local phenomena observed in supporting area of sandwich plates often initiate failure mechanisms. Introducing optimally located elastic supports allows to reduce the unfavourable influence of temperature on the state of stress. Several examples illustrate the application of derived sensitivity operators and demonstrate their exactness


Designs ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 19
Author(s):  
Andreas K. Lianos ◽  
Harry Bikas ◽  
Panagiotis Stavropoulos

The design methodologies and part shape algorithms for additive manufacturing (AM) are rapidly growing fields, proven to be of critical importance for the uptake of additive manufacturing of parts with enhanced performance in all major industrial sectors. The current trend for part design is a computationally driven approach where the parts are algorithmically morphed to meet the functional requirements with optimized performance in terms of material distribution. However, the manufacturability restrictions of AM processes are not considered at the primary design phases but at a later post-morphed stage of the part’s design. This paper proposes an AM design method to ensure: (1) optimized material distribution based on the load case and (2) the part’s manufacturability. The buildability restrictions from the direct energy deposition (DED) AM technology were used as input to the AM shaping algorithm to grant high AM manufacturability. The first step of this work was to define the term of AM manufacturability, its effect on AM production, and to propose a framework to estimate the quantified value of AM manufacturability for the given part design. Moreover, an AM design method is proposed, based on the developed internal stresses of the build volume for the load case. Stress tensors are used for the determination of the build orientation and as input for the part morphing. A top-down mesoscale geometric optimization is used to realize the AM part design. The DED Design for Additive Manufacturing (DfAM) rules are used to delimitate the morphing of the part, representing at the same time the freeform mindset of the AM technology. The morphed shape of the part is optimized in terms of topology and AM manufacturability. The topology optimization and AM manufacturability indicator (TMI) is introduced to screen the percentage of design elements that serve topology optimization and the ones that serve AM manufacturability. In the end, a case study for proof of concept is realized.


Author(s):  
Guang Dong ◽  
Zheng-Dong Ma ◽  
Gregory Hulbert ◽  
Noboru Kikuchi ◽  
Sudhakar Arepally ◽  
...  

Efficient and reliable sensitivity analyses are critical for topology optimization, especially for multibody dynamics systems, because of the large number of design variables and the complexities and expense in solving the state equations. This research addresses a general and efficient sensitivity analysis method for topology optimization with design objectives associated with time dependent dynamics responses of multibody dynamics systems that include nonlinear geometric effects associated with large translational and rotational motions. An iterative sensitivity analysis relation is proposed, based on typical finite difference methods for the differential algebraic equations (DAEs). These iterative equations can be simplified for specific cases to obtain more efficient sensitivity analysis methods. Since finite difference methods are general and widely used, the iterative sensitivity analysis is also applicable to various numerical solution approaches. The proposed sensitivity analysis method is demonstrated using a truss structure topology optimization problem with consideration of the dynamic response including large translational and rotational motions. The topology optimization problem of the general truss structure is formulated using the SIMP (Simply Isotropic Material with Penalization) assumption for the design variables associated with each truss member. It is shown that the proposed iterative steps sensitivity analysis method is both reliable and efficient.


Sign in / Sign up

Export Citation Format

Share Document