Vibration analysis of closed laminate conical, cylindrical shells and annular plates using meshfree method

2021 ◽  
Vol 133 ◽  
pp. 341-361
Author(s):  
Shuangwei Hu ◽  
Rui Zhong ◽  
Qingshan Wang ◽  
Qin Bin
2016 ◽  
Vol 24 (6) ◽  
pp. 1123-1144 ◽  
Author(s):  
R Ansari ◽  
J Torabi ◽  
M Faghih Shojaei

Free vibration analysis of embedded functionally graded carbon nanotube-reinforced composite (FG-CNTRC) conical, cylindrical shells and annular plates is carried out using the variational differential quadrature (VDQ) method. Pasternak-type elastic foundation is taken into consideration. It is assumed that the functionally graded nanocomposite materials have the continuous material properties defined according to extended rule of mixture. Based on the first-order shear deformation theory, the energy functional of the structure is calculated. Applying the generalized differential quadrature method and periodic differential operators in axial and circumferential directions, respectively, the discretized form of the energy functional is derived. Based on Hamilton’s principle and using the VDQ method, the reduced forms of mass and stiffness matrices are obtained. The comparison and convergence studies of the present numerical method are first performed and then various numerical results are presented. It is found that the volume fractions and functionally grading of carbon nanotubes play important roles in the vibrational characteristics of FG-CNTRC cylindrical, conical shells and annular plates.


AIAA Journal ◽  
2007 ◽  
Vol 45 (8) ◽  
pp. 2051-2061 ◽  
Author(s):  
Hsuan-Teh Hu ◽  
Kou-Long Wang

Author(s):  
M Shariyat

Based on the idea of double superposition, an accurate high-order global–local theoryis proposed for bending and vibration analysis of cylindrical shells subjected to thermo-mechanical loads, for the first time. The theory has many novelties, among them: (1) less computational time due to the use of the global–local technique and matrix formulations; (2) satisfaction of the complete kinematic and transverse stress continuity conditions at the layer interfaces under thermo-mechanical loads; (3) consideration of the transverse flexibility; (4) release of Love–Timoshenko assumption; and (5) capability of investigating the local phenomena. Various comparative examples are included to validate the theory and to examine its accuracy and efficiency.


2015 ◽  
Vol 20 (4) ◽  
pp. 939-951
Author(s):  
K.K. Żur

Abstract Free vibration analysis of homogeneous and isotropic annular thin plates by using Green’s functions is considered. The formula of the influence function for uniform thin circular and annular plates is presented in closed-form. The limited independent solutions of differential Euler equation were expanded in the Neumann power series based on properties of integral equations. The analytical frequency equations as power series were obtained using the method of successive approximations. The natural axisymmetric frequencies for singularities when the core radius approaches zero are calculated. The results are compared with selected results presented in the literature.


Sign in / Sign up

Export Citation Format

Share Document