A bio-inspired remodelling algorithm combined with a natural neighbour meshless method to obtain optimized functionally graded materials

2022 ◽  
Vol 135 ◽  
pp. 145-155
Author(s):  
A.I. Pais ◽  
J.L. Alves ◽  
J. Belinha
Author(s):  
B. N. Rao ◽  
S. Rahman

This paper presents a Galerkin-based meshless method for calculating stress-intensity factors (SIFs) for a stationary crack in two-dimensional functionally graded materials of arbitrary geometry. The method involves an element-free Galerkin method (EFGM), where the material properties are smooth functions of spatial co-ordinates and two newly developed interaction integrals for mixed-mode fracture analysis. These integrals can also be implemented in conjunction with other numerical methods, such as the finite element method (FEM). Five numerical examples including both mode-I and mixed-mode problems are presented to evaluate the accuracy of SIFs calculated by the proposed EFGM. Comparisons have been made between the SIFs predicted by EFGM and available reference solutions in the literature, generated either analytically or by FEM using various other fracture integrals or analyses. A good agreement is obtained between the results of the proposed meshless method and the reference solutions.


2021 ◽  
Vol 6 (11) ◽  
pp. 12599-12618
Author(s):  
Chao Wang ◽  
◽  
Fajie Wang ◽  
Yanpeng Gong ◽  
◽  
...  

<abstract> <p>This paper proposes a local semi-analytical meshless method for simulating heat conduction in nonlinear functionally graded materials. The governing equation of heat conduction problem in nonlinear functionally graded material is first transformed to an anisotropic modified Helmholtz equation by using the Kirchhoff transformation. Then, the local knot method (LKM) is employed to approximate the solution of the transformed equation. After that, the solution of the original nonlinear equation can be obtained by the inverse Kirchhoff transformation. The LKM is a recently proposed meshless approach. As a local semi-analytical meshless approach, it uses the non-singular general solution as the basis function and has the merits of simplicity, high accuracy, and easy-to-program. Compared with the traditional boundary knot method, the present scheme avoids an ill-conditioned system of equations, and is more suitable for large-scale simulations associated with complicated structures. Three benchmark numerical examples are provided to confirm the accuracy and validity of the proposed approach.</p> </abstract>


Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Sign in / Sign up

Export Citation Format

Share Document