kirchhoff transformation
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yajun Chen ◽  
Qikui Du

In this paper, the exact artificial boundary conditions for quasi-linear problems in semi-infinite strips are investigated. Based on the Kirchhoff transformation, the exact and approximate boundary conditions on a segment artificial boundary are derived. The error estimate for the finite element approximation with the artificial boundary condition is obtained. Some numerical examples show the efficiency of this method.


2021 ◽  
Vol 20 (2) ◽  
pp. 55
Author(s):  
S. S. Ribeiro ◽  
G. C. Oliveira ◽  
J. R. F. Oliveira ◽  
G. Guimarães

Analytical solutions showed to be an important and strong tool for understand thermal problems using mathematic tools. In this work we propose an approach about one dimensional analytical solution for a nonlinear transient heat conduction problem, were used mathematical elements such as Kirchhoff transformation, Green’s functions and the combination of them.  The combination of this two methods showed that was possible to determinate an analytical solution for the nonlinear thermal problem, and showed a good approximation when compared with results from numerical methods.


2021 ◽  
Vol 16 ◽  
pp. 59-67
Author(s):  
R. M. S. Gama ◽  
R. Pazetto S. Gama

In this work it is considered the Fick’s second law in a context in which the diffusion coefficient depends on the concentration. It is employed the Kirchhoff transformation in order to simplify the mathematical structure of the Fick’s second law, giving rise to a more convenient description. In order to provide a general protocol, the diffusion coefficient will be assumed a piecewise constant function of the concentration. Exact formulas are presented for both the Kirchhoff transformation and its inverse, in such a way that there is no limit of accuracy. Some numerical examples are presented with the aid of a semi-implicit procedure associated with a finite difference approximation.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1598
Author(s):  
Yajun Chen ◽  
Qikui Du

In this paper, the method of artificial boundary conditions for exterior quasilinear problems in concave angle domains is investigated. Based on the Kirchhoff transformation, the exact quasiliner elliptical arc artificial boundary condition is derived. Using the approximate elliptical arc artificial boundary condition, the finite element method is formulated in a bounded region. The error estimates are obtained. The effectiveness of our method is showed by some numerical experiments.


Author(s):  
M. Megasari

Abstrak. Penelitian ini membahas tentang penyelesaian masalah infiltrasi stasioner dari saluran datar dengan Dual Reciprocity Boundary Element Method (DRBEM). Persamaan pembangun untuk masalah ini adalah persamaan Richard. Menggunakan transformasi Kirchhoff dan relasi eksponensial konduktifitas hidrolik, persamaan Richard ditransformasi ke dalam persamaan infiltrasi stasioner dalam Matric Flux Potential (MFP). Persamaan infiltrasi dalam MFP selanjutnya diubah ke dalam persamaan Helmholtz termodifikasi. Model matematika infiltrasi stasioner pada saluran datar berbentuk Masalah Syarat batas Helmholtz termodifikasi Solusi numerik diperoleh dengan menyelesaikan persamaan Helmholtz termodifikasi menggunakan Dual Reciprocity Boundary Element Method (DRBEM) dengan pengambilan jumlah titik kolokasi eksterior dan interior yang bervariasi. Lebih lanjut, solusi numerik dan solusi analitik dibandingkan..Kata Kunci: Infiltrasi, saluran datar, persamaan helmholtz termodifikasi, DRBEM.Abstract. This research discusses about the problem solving of steady infiltration problem from flat channel with Dual Reciprocity Boundary Element Method (DRBEM). The governing equation for this problem is Richard’s equation. Using Kirchhoff transformation and exponential hydraulic conductivity relation, Richard’s equation is transformed into steady infiltration equation in the form of MFP. Infiltration equation in the form of MFP is then transformed to modified Helmholtz equation. A mathematical model of steady infiltration from flat channel in the form of boundary condition problem of modified Helmholtz EQUATION. Numerical solution is obtained by solving modified Helmholtz equation by using Dual Reciprocity Boundary Element Method (DRBEM) with various number of exterior and interior collocation points. Moreover, numerical and analytic solution are then compared.Keywords: infiltration, flat channel, modified Helmholtz equation, DRBEM


Author(s):  
Mohamed Abdelsabour Fahmy

AbstractThe main aim of this article is to develop a new boundary element method (BEM) algorithm to model and simulate the nonlinear thermal stresses problems in micropolar functionally graded anisotropic (FGA) composites with temperature-dependent properties. Some inside points are chosen to treat the nonlinear terms and domain integrals. An integral formulation which is based on the use of Kirchhoff transformation is firstly used to simplify the transient heat conduction governing equation. Then, the residual nonlinear terms are carried out within the current formulation. The domain integrals can be effectively treated by applying the Cartesian transformation method (CTM). In the proposed BEM technique, the nonlinear temperature is computed on the boundary and some inside domain integral. Then, nonlinear displacement can be calculated at each time step. With the calculated temperature and displacement distributions, we can obtain the values of nonlinear thermal stresses. The efficiency of our proposed methodology has been improved by using the communication-avoiding versions of the Arnoldi (CA-Arnoldi) preconditioner for solving the resulting linear systems arising from the BEM to reduce the iterations number and computation time. The numerical outcomes establish the influence of temperature-dependent properties on the nonlinear temperature distribution, and investigate the effect of the functionally graded parameter on the nonlinear displacements and thermal stresses, through the micropolar FGA composites with temperature-dependent properties. These numerical outcomes also confirm the validity, precision and effectiveness of the proposed modeling and simulation methodology.


2021 ◽  
Vol 15 ◽  
pp. 12-21
Author(s):  
Jonatas Motta Quirino ◽  
Eduardo Dias Correa ◽  
Rodolfo do Lago Sobral

- The present work describes the thermal profile of a single dissipation fin, where their surfaces reject heat to the environment. The problem happens in steady state, which is, all the analysis occurs after the thermal distribution reach heat balance considering that the fin dissipates heat by conduction, convection and thermal radiation. Neumann and Dirichlet boundary conditions are established, characterizing that heat dissipation occurs only on the fin faces, in addition to predicting that the ambient temperature is homogeneous. Heat transfer analysis is performed by computational simulations using appropriate numerical methods. The most of solutions in the literature consider some simplifications as constant thermal conductivity and linear boundary conditions, this work addresses this subject. The method applied is the Kirchhoff Transformation, that uses the thermal conductivity variation to define the temperatures values, once the thermal conductivity variate as a temperature function. For the real situation approximation, this work appropriated the silicon as the fin material to consider the temperature function at each point, which makes the equation that governs the non-linear problem. Finally, the comparison of the results obtained with typical results proves that the assumptions of variable thermal conductivity and heat dissipation by thermal radiation are crucial to obtain results that are closer to reality.


Author(s):  
Rajagopal Raghavan ◽  
Chih Chen

The nonlinear differential equation describing flow of a constant compressibility liquid in a porous medium is examined in terms of the Kirchhoff and Cole-Hopf transformations. A quantitative measure of the applicability of representing flow by a slightly compressible liquid – which leads to a linear differential equation, the Theis equation – is identified. The classical Theis problem and the finite-well-radius problem in a system that is infinite in its areal extent are used as prototypes to address concepts discussed. This choice is dictated by the ubiquity of solutions that depend on these archetypal examples for examining transient diffusion. Notwithstanding that the Kirchhoff and Cole-Hopf transformations arrive at a linear differential equation, for the specific purposes of this work – the estimation of the hydraulic properties of rocks, the Kirchhoff transformation is much more advantageous in a number of ways; these are documented. Insights into the structure of the nonlinear solution are provided. The results of this work should prove useful in many contexts of mathematical physics though developed in the framework of applications pertaining to the earth sciences.


2021 ◽  
Vol 6 (11) ◽  
pp. 12599-12618
Author(s):  
Chao Wang ◽  
◽  
Fajie Wang ◽  
Yanpeng Gong ◽  
◽  
...  

<abstract> <p>This paper proposes a local semi-analytical meshless method for simulating heat conduction in nonlinear functionally graded materials. The governing equation of heat conduction problem in nonlinear functionally graded material is first transformed to an anisotropic modified Helmholtz equation by using the Kirchhoff transformation. Then, the local knot method (LKM) is employed to approximate the solution of the transformed equation. After that, the solution of the original nonlinear equation can be obtained by the inverse Kirchhoff transformation. The LKM is a recently proposed meshless approach. As a local semi-analytical meshless approach, it uses the non-singular general solution as the basis function and has the merits of simplicity, high accuracy, and easy-to-program. Compared with the traditional boundary knot method, the present scheme avoids an ill-conditioned system of equations, and is more suitable for large-scale simulations associated with complicated structures. Three benchmark numerical examples are provided to confirm the accuracy and validity of the proposed approach.</p> </abstract>


Sign in / Sign up

Export Citation Format

Share Document