Experimental and modeling investigation of the failure resistance of Advanced High Strength Steels spot welds

2011 ◽  
Vol 78 (10) ◽  
pp. 2259-2272 ◽  
Author(s):  
S. Dancette ◽  
D. Fabrègue ◽  
V. Massardier ◽  
J. Merlin ◽  
T. Dupuy ◽  
...  
Metals ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 111 ◽  
Author(s):  
Thibaut Huin ◽  
Sylvain Dancette ◽  
Damien Fabrègue ◽  
Thomas Dupuy

2010 ◽  
Vol 24-25 ◽  
pp. 299-304 ◽  
Author(s):  
Rémi Lacroix ◽  
Joël Monatte ◽  
Arnaud Lens ◽  
Guillaume Kermouche ◽  
J.M. Bergheau ◽  
...  

This paper describes an innovative way to characterize the strength of spot welds. A wedge test has been developed to generate interfacial failures in weldments and observe in-situ the crack propagation. An energy analysis quantifies the spot weld crack resistance. Finite Element calculations investigate the stresses and strains along the crack front. A comparison of the local loading state with experimentally observed crack fronts provides the necessary data for a failure criterion in spot weld fusion zones. The method is applied to spot welds of Advanced High Strength steels.


2010 ◽  
Vol 89-91 ◽  
pp. 130-135 ◽  
Author(s):  
Sylvain Dancette ◽  
Véronique Massardier-Jourdan ◽  
Jacques Merlin ◽  
Damien Fabrègue ◽  
Thomas Dupuy

Advanced High Strength Steels (AHSS) are key materials in the conception of car body structures, permitting to reduce their weight while increasing their behavior in crash conditions. Nevertheless, the weldability of AHSS presents some particular aspects, in that complex failure types involving partial or full interfacial failure can be encountered more often than with conventional mild steels during destructive testing, despite high spot weld strength levels. This paper aims at characterizing the behavior of different AHSS spot welds under two quasi-static loading conditions, tensile shear and cross tension, often used in the automotive industry for the determination of their weldability. Interrupted cross tension and tensile shear tests were performed and spot welds failure was investigated with optical micrographs, SEM fractography and 3D-tomography in order to follow the three-dimensional crack paths due to the complex loading modes. A limited number of failure zones and damage mechanisms could be distinguished for all steel grades investigated. Moreover, numerical simulation of the tests was used to better understand the stress state in the weld and the influence of geometrical features such as weld size on the occurrence of the different failure types.


Sign in / Sign up

Export Citation Format

Share Document