Numerical simulation of crack propagation and branching in functionally graded materials using peridynamic modeling

2018 ◽  
Vol 191 ◽  
pp. 13-32 ◽  
Author(s):  
Zhanqi Cheng ◽  
Yingkai Liu ◽  
Jun Zhao ◽  
Hu Feng ◽  
Yizhang Wu
2005 ◽  
Vol 492-493 ◽  
pp. 409-414 ◽  
Author(s):  
Jeong Ho Kim ◽  
Glaucio H. Paulino

This paper presents numerical simulation of mixed-mode crack propagation in functionally graded materials by means of a remeshing algorithm in conjunction with the finite element method. Each step of crack growth simulation consists of the calculation of the mixedmode stress intensity factors by means of a non-equilibrium formulation of the interaction integral method, determination of the crack growth direction based on a specific fracture criterion, and local automatic remeshing along the crack path. A specific fracture criterion is tailored for FGMs based on the assumption of local homogenization of asymptotic crack-tip fields in FGMs. The present approach uses a user-defined crack increment at the beginning of the simulation. Crack trajectories obtained by the present numerical simulation are compared with available experimental results.


2009 ◽  
Vol 631-632 ◽  
pp. 121-126 ◽  
Author(s):  
Li Ma ◽  
Zhi Yong Wang ◽  
Lin Zhi Wu

This paper addresses the numerical simulation of mixed-mode crack propagation in Functionally Graded Materials (FGMs) by means of eXtended Finite Element Method (XFEM), endowed with elastic and toughness properties which gradually vary in space. The method allows to follow crack paths independently of the finite element mesh, this feature is especially important for FGMs, since the gradation of the mechanical properties may lead to complex propagation paths also in simple symmetric tests. Each step of crack growth simulation consists of the calculation of the mixed-mode stress intensity factor by means of a non-equilibrium formulation of the interaction integral method, determination of the crack growth direction based on a specific fracture criterion. A specific fracture criterion is tailored for FGMs based on the assumption of local homogenization of asymptotic crack-tip fields in FGMs. The present approach uses a user-defined crack increment at the beginning of the simulation. Crack trajectories obtained by the present numerical simulation agree well with available experimental results for FGMs. The computational scheme developed here serve as a guideline for fracture experiments on FGM specimens (e.g. initiation toughness and R-curve behavior).


Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Fei Wang ◽  
Yu’e Ma ◽  
Yanning Guo ◽  
Wei Huang

Peridynamic (PD) theory is used to study the thermally induced cracking behavior of functionally graded materials (FGMs). A modified thermomechanical peridynamic model is developed. The thermal crack propagation of a ceramic slab in quenching is calculated to validate the modified PD model. The results predicted by the modified PD model agree with previously published numerical and experimental ones. Compared with the original PD model, the calculation accuracy of the modified PD model for thermal cracking is improved. The thermal cracking in FGMs is also simulated. The effects of material shape, initial temperature, and ceramic fracture toughness on thermal crack propagation behaviors are studied. It can be found that the thermal cracks in FGMs are still in periodical and hierarchical forms. The metal materials in FGMs can prevent crack initiation and arrest the long cracks. The crack number tends to be increased with the increasing initial temperature, while the strengthened ceramic fracture toughness can decrease it.


Author(s):  
V. Cannillo ◽  
L. Lusvarghi ◽  
T. Manfredini ◽  
M. Montorsi ◽  
C. Siligardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document