Boundary effect on crack kinking in a magnetoelectroelastic strip with a central crack

2018 ◽  
Vol 201 ◽  
pp. 336-352 ◽  
Author(s):  
Keqiang Hu ◽  
Zengtao Chen ◽  
Xiaodong Wang
2021 ◽  
Author(s):  
Tongge Xu ◽  
Shuiting Ding ◽  
Huimin Zhou ◽  
Guo Li

Abstract Probabilistic failure risk assessment is becoming important in the field of airworthiness. In the fracture mechanics module of probabilistic failure risk assessment, it is important to efficiently and accurately calculate the stress intensity factors (SIFs). At present, the weight function method (WFM), especially the universal weight functions (UWFs) proposed by Glinka and Shen, has been adopted to calculate SIFs with high accuracy and computational efficiency. However, the concrete coefficients in the universal weight functions remain unknown, and the rules of the geometry parameters and these coefficients have not yet been summarized, which hinders their subsequent use. In this article, the specific type of embedded crack-central crack is under discussion, and the derivation of the UWF is introduced. The response surface method (RSM), as a means of database establishment, is used to construct the relations between the geometric parameters including the length and thickness of a three-dimensional finite plate and coefficients in the UWF. The errors of the SIF calculation between the UWF and finite element results are less than 2 MPa m within a certain range. For the evaluation of the boundary effect on central cracks, the difference between finite and infinite plates is discussed. In addition, considering the complexity of the general off-centre crack, an approximation method has been proposed to transform the off-centre crack to the central crack. The results show that the method can be applied with high precision in specific situations and stresses the necessity of follow-up research on general off-centre cracks.


1989 ◽  
Vol 111 (2) ◽  
pp. 172-176 ◽  
Author(s):  
Y. M. Tsai

The dynamic response of a central crack in an orthotropic material is investigated. The crack is situated along one of the principal axes of the material. The load is harmonic in time and normally applied to the crack surface. The Fourier transform is used to solve the dynamic fracture problem, and the results are simplified through a complete contour integration. The dynamic stress intensity factor is obtained in an exact expression in terms of the frequency factor and the material constants. The frequency factor is defined as the product of the wave frequency and the half-crack length, divided by the shear wave speed. Glass/epoxy and graphite/epoxy composite materials are used as example materials in calculating the numerical values of the stress intensity factors. The maximum values of the stress intensity factors are shown to be dependent on the value of the nondimensional frequency factor and the material anisotropy. The motion of the crack surface is also investigated. The crack surface distortion from the associated static crack shape also depends on the wave frequency and the orthotropic material constants.


Sign in / Sign up

Export Citation Format

Share Document