granular piles
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Paula A. Gago ◽  
Stefan Boettcher

The grain-scale dynamics of the internal energy inside a tapped granular pile is studied, advancing on a kinetic theory of grains.


Author(s):  
Avinash A Rakh

Permeable granular piles are used to increase the time rate of consolidation, reduce liquefaction potential, improve bearing capacity, and reduce settlement. However, the behaviour of granular piles depends on the confinement provided by surrounding soil, which limits their use in very soft clays and silts, and organic and peat soils. This research effort aims to develop a new ground-improvement method using pervious concrete piles. Pervious concrete piles provide higher stiffness and strength, which are independent of surrounding soil confinement, while offering permeability comparable to granular piles. This proposed ground-improvement method can improve the performance of different structures supported on poor soils. To achieve the goal of the research project, a series of pervious concrete sample mixing has been conducted to investigate the pervious concrete material properties. Laboratory tests are carried out on a pervious concrete pile of 100 mm diameter and variation at different lengths (500mm,400mm,300mm) surrounded by sand of different density. The tests are carried out either with an entire equivalent area loaded to estimate the stiffness of improved ground or only a column loaded to estimate the limiting axial capacity. Pervious concrete is a special concrete product made primarily of a single-sized aggregate. Pervious concrete has been used in pavements to reduce storm-water-runoff quantities and perform initial water-quality treatment by allowing water to penetrate through the surface. In the United States, pervious concrete is mainly used in pavement applications, including sidewalks, parking lots, tennis courts, pervious base layers under heavy-duty pavements, and low traffic-density areas. The vertical load responses of pervious concrete are the variation of soil stresses and displacement are discussed. Nine tests are conducted on pervious concrete pile further investigate the behaviour of the pervious concrete pile and surrounding soil under vertical load condition. Therefore, Pervious Concrete Piles is particularly suitable for reinforcing subsoil that has low strength and poor permeability.


2021 ◽  
Vol 43 (2) ◽  
pp. 99-115
Author(s):  
Vaibhaw Garg ◽  
Jitendra Kumar Sharma ◽  
Ashish Solanki

Abstract Stone columns (or granular piles, GPs) are progressively being utilized for ground improvement, mostly for pliant edifice such as road mounds, oil depot, and so forth. The present analysis is done by introducing strengthening at both the ends of GP, i.e., bottom and top end so that the bulging problem will be solved and the beneficiary effect of the bearing stratum can be utilized by the bottom strengthening feature. Analysis of a single partially strengthened, at both top and bottom, end-bearing GP is presented in this article in terms of displacement affecting component for the top (DACT) of GP, percentage load transferred to the base (PLTB) of strengthened GP, and normalized shear stress (NSS). The PLTB of the strengthened GP was found to increase considerably. The NSS was found to reduce at the top end of GP and is found to be redistributed along the length of GP.


2021 ◽  
Vol 118 (3) ◽  
pp. e2018509118
Author(s):  
Yeonsu Jung ◽  
Sohyun Jung ◽  
Sang-im Lee ◽  
Wonjung Kim ◽  
Ho-Young Kim

Mud nests built by swallows (Hirundinidae) and phoebes (Sayornis) are stable granular piles attached to cliffs, walls, or ceilings. Although these birds have been observed to mix saliva with incohesive mud granules, how such biopolymer solutions provide the nest with sufficient strength to support the weight of the residents as well as its own remains elusive. Here, we elucidate the mechanism of strong granular cohesion by the viscoelastic paste of bird saliva through a combination of theoretical analysis and experimental measurements in both natural and artificial nests. Our mathematical model considering the mechanics of mud nest construction allows us to explain the biological observation that all mud-nesting bird species should be lightweight.


2021 ◽  
Vol 309 ◽  
pp. 01192
Author(s):  
Thentu Jahnavi ◽  
Kattamanchi V. Kranthi Kumar

To reduce the swell pressures in expansive soils usually granular piles are used, but due to lack of availability there is need of a material which is highly compressible and economical also. EPS Geofoams are obtained by expanding the polystyrene polymer which is a by-product obtained from the petroleum industry. As the drainability of the Geofoam is very less a layer of Geocomposite is surrounded over the geofoam especially for allowing the drainage. So, the mechanism involved in the study is that whenever a saturated soil swells in vertical direction this Geofoam will give room to accommodate the lateral swell which leads to reduction in the vertical heave and Geocomposite will dissipate the excess pore pressure generated during swelling of the soil. In the present study an attempt was made to predict the performance of EPS Geofoam and Geocomposite in reducing the soil heave due to constant infiltration. A two dimensional (2D) numerical model was developed using GEOSTUDIO 2012 to predict the behaviour of the swelling soil due to the inclusion of Geofoams as well as stone columns. Generally coupled and uncoupled analysis are performed to study the behaviour of the swelling soil but as the uncoupled analysis is more advantageous than coupled analysis it is performed in the present study.


2020 ◽  
Vol 117 (52) ◽  
pp. 33072-33076
Author(s):  
Paula A. Gago ◽  
Stefan Boettcher

This paper links the nonequilibrium glassy relaxation behavior of otherwise athermal granular materials to those of thermally activated glasses. Thus, it demonstrates a much wider universality among complex glassy materials out of equilibrium. Our three-dimensional molecular dynamics simulations, fully incorporating friction and inelastic collisions, are designed to reproduce experimental behavior of tapped granular piles. A simple theory based on a dynamics of records explains why the typical phenomenology of annealing and aging after a quench should extend to such granular matter, activated by taps, beyond the more familiar realm of polymers, colloids, and magnetic materials that all exhibit thermal fluctuations.


2020 ◽  
pp. 499-502
Author(s):  
Alexander Schinner ◽  
Hans-Georg Mattutis ◽  
Tetsuo Akiyama ◽  
Junya Aoki ◽  
Satoshi Takahashi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document