liquid crystal elastomer
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 135)

H-INDEX

33
(FIVE YEARS 11)

2022 ◽  
Vol 9 (1) ◽  
pp. 011301
Author(s):  
Yuchen Wang ◽  
Jiaqi Liu ◽  
Shu Yang

2022 ◽  
Vol 8 ◽  
Author(s):  
Quanbao Cheng ◽  
Lin Zhou ◽  
Kai Li

The inverted pendulum system has great potential for various engineering applications, and its stabilization is challenging because of its unstable characteristic. The well-known Kapitza’s pendulum adopts the parametrically excited oscillation to stabilize itself, which generally requires a complex controller. In this paper, self-sustained oscillation is utilized to stabilize an inverted pendulum, which is made of a V-shaped, optically responsive liquid crystal elastomer (LCE) bar under steady illumination. Based on the well-established dynamic LCE model, a theoretical model of the LCE inverted pendulum is formulated, and numerical calculations show that it always develops into the unstable static state or the self-stabilized oscillation state. The mechanism of the self-stabilized oscillation originates from the reversal of the gravity moment of the inverted pendulum accompanied with its own movement. The critical condition for triggering self-stabilized oscillation is fully investigated, and the effects of the system parameters on the stability of the inverted pendulum are explored. The self-stabilized inverted pendulum does not need an additional controller and offers new designs of self-stabilized inverted pendulum systems for potential applications in robotics, military industry, aerospace, and other fields.


2022 ◽  
Vol 163 ◽  
pp. 108140
Author(s):  
Xiaodong Liang ◽  
Zengfu Chen ◽  
Lei Zhu ◽  
Kai Li

2021 ◽  
pp. 2107840
Author(s):  
Yunpeng Wang ◽  
Jiahao Sun ◽  
Wei Liao ◽  
Zhongqiang Yang

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7313
Author(s):  
Thomas Raistrick ◽  
Matthew Reynolds ◽  
Helen F. Gleeson ◽  
Johan Mattsson

Liquid Crystal Elastomers (LCEs) combine the anisotropic ordering of liquid crystals with the elastic properties of elastomers, providing unique physical properties, such as stimuli responsiveness and a recently discovered molecular auxetic response. Here, we determine how the molecular relaxation dynamics in an acrylate LCE are affected by its phase using broadband dielectric relaxation spectroscopy, calorimetry and rheology. Our LCE is an excellent model system since it exhibits a molecular auxetic response in its nematic state, and chemically identical nematic or isotropic samples can be prepared by cross-linking. We find that the glass transition temperatures (Tg) and dynamic fragilities are similar in both phases, and the T-dependence of the α relaxation shows a crossover at the same T* for both phases. However, for T>T*, the behavior becomes Arrhenius for the nematic LCE, but only more Arrhenius-like for the isotropic sample. We provide evidence that the latter behavior is related to the existence of pre-transitional nematic fluctuations in the isotropic LCE, which are locked in by polymerization. The role of applied strain on the relaxation dynamics and mechanical response of the LCE is investigated; this is particularly important since the molecular auxetic response is linked to a mechanical Fréedericksz transition that is not fully understood. We demonstrate that the complex Young’s modulus and the α relaxation time remain relatively unchanged for small deformations, whereas for strains for which the auxetic response is achieved, significant increases are observed. We suggest that the observed molecular auxetic response is coupled to the strain-induced out-of-plane rotation of the mesogen units, in turn driven by the increasing constraints on polymer configurations, as reflected in increasing elastic moduli and α relaxation times; this is consistent with our recent results showing that the auxetic response coincides with the emergence of biaxial order.


2021 ◽  
Vol 6 (45) ◽  
pp. 12604-12609
Author(s):  
Mieko Arisawa ◽  
Miyu Yoshida ◽  
Kohei Fukumoto ◽  
Tsukasa Sawato ◽  
Masahiko Yamaguchi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7245
Author(s):  
Juan Chen ◽  
Oluwafemi Isaac Akomolafe ◽  
Jinghua Jiang ◽  
Chenhui Peng

Soft materials with programmability have been widely used in drug delivery, tissue engineering, artificial muscles, biosensors, and related biomedical engineering applications. Liquid crystal elastomers (LCEs) can easily morph into three-dimensional (3D) shapes by external stimuli such as light, heat, and humidity. In order to program two-dimensional (2D) LCE sheets into desired 3D morphologies, it is critical to precisely control the molecular orientations in LCE. In this work, we propose a simple photopatterning method based on a maskless projection display system to create spatially varying molecular orientations in LCE films. By designing different synchronized rotations of the polarizer and projected images, diverse configurations ranging from individual to 2D lattice of topological defects are fabricated. The proposed technique significantly simplified the photopatterning procedure without using fabricated masks or waveplates. Shape transformations such as a cone and a truncated square pyramid, and functionality mimicking the responsive Mimosa Pudica are demonstrated in the fabricated LCE films. The programmable LCE morphing behaviors demonstrated in this work will open opportunities in soft robotics and smart functional devices.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6688
Author(s):  
Mikołaj Rogóż ◽  
Jakub Haberko ◽  
Piotr Wasylczyk

Linear displacement is used for positioning and scanning, e.g., in robotics at different scales or in—scientific instrumentation. Most linear motors are either powered by rotary drives or are driven directly by pressure, electromagnetic forces or a shape change in a medium, such as piezoelectrics or shape-memory materials. Here, we present a centimeter-scale light-powered linear inchworm motor, driven by two liquid crystal elastomer (LCE) accordion-like actuators. The rubbing overwriting technique was used to fabricate the LCE actuators, made of elastomer film with patterned alignment. In the linear motor, a scanned green laser beam induces a sequence of travelling deformations in a pair of actuators that move a gripper, which couples to a shaft via friction moving it with an average speed in the order of millimeters per second. The prototype linear motor demonstrates how LCE light-driven actuators with a limited stroke can be used to drive more complex mechanisms, where large displacements can be achieved, defined only by the technical constrains (the shaft length in our case), and not by the limited strain of the material. Inchworm motors driven by LCE actuators may be scaled down to sub-millimeter size and can be used in applications where remote control and power supply with light, either delivered in free space beams or via fibers, is an advantage.


Sign in / Sign up

Export Citation Format

Share Document