Experimental validation of a complex, large-scale, rigid-body mechanism

2012 ◽  
Vol 36 ◽  
pp. 220-227 ◽  
Author(s):  
Marko Langerholc ◽  
Martin Česnik ◽  
Janko Slavič ◽  
Miha Boltežar
2017 ◽  
Vol 156 ◽  
pp. 156-170 ◽  
Author(s):  
V. Spallina ◽  
B. Marinello ◽  
F. Gallucci ◽  
M.C. Romano ◽  
M. Van Sint Annaland

2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
Jonas Asprion ◽  
Oscar Chinellato ◽  
Lino Guzzella

In response to the increasingly stringent emission regulations and a demand for ever lower fuel consumption, diesel engines have become complex systems. The exploitation of any leftover potential during transient operation is crucial. However, even an experienced calibration engineer cannot conceive all the dynamic cross couplings between the many actuators. Therefore, a highly iterative procedure is required to obtain a single engine calibration, which in turn causes a high demand for test-bench time. Physics-based mathematical models and a dynamic optimisation are the tools to alleviate this dilemma. This paper presents the methods required to implement such an approach. The optimisation-oriented modelling of diesel engines is summarised, and the numerical methods required to solve the corresponding large-scale optimal control problems are presented. The resulting optimal control input trajectories over long driving profiles are shown to provide enough information to allow conclusions to be drawn for causal control strategies. Ways of utilising this data are illustrated, which indicate that a fully automated dynamic calibration of the engine control unit is conceivable. An experimental validation demonstrates the meaningfulness of these results. The measurement results show that the optimisation predicts the reduction of the fuel consumption and the cumulative pollutant emissions with a relative error of around 10% on highly transient driving cycles.


2010 ◽  
Vol 25 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Klaus Iglberger ◽  
Ulrich Rüde
Keyword(s):  

2013 ◽  
Vol 139 (6) ◽  
pp. 1033-1042 ◽  
Author(s):  
George Vasdravellis ◽  
Theodore L. Karavasilis ◽  
Brian Uy

Author(s):  
Olena Solona ◽  
Vladimir Kovbasa ◽  
Igor Kupchuk

Today's realities of agriculture are increasingly prompting the need for the introduction of technologies for subsoil irrigation, as a possible tool to obtain maximum efficiency indicators of agricultural activities of agricultural enterprises. At the same time, the large-scale introduction of intra-soil irrigation technologies at the enterprises of the agro-industrial complex is significantly complicated due to the poor practical and theoretical development of its methods, as well as the lack of extensive experimental verification of this method of irrigation. The development of many processes in the construction of irrigation and engineering structures requires substantiation of the geometric parameters and operating modes of the working bodies that are used to implement these processes. One of the working bodies that is used to form the cavity along which communication is stretched is a mole plow, which, depending on the expected working conditions, may have a different geometric configuration and size. The results of investigations of the interaction of the mole ploughshare with the soil in cavity formation for laying the anti-filtration screen are describe in this article. The authors propose to consider the soil in the form of an elastic-viscous model. By solving the contact problem of the interaction of a rigid body with a deformed medium, the stress components in the soil on the contact surface with the ploughshare are determined, and soil compaction is determined. The components of forces that appear on the surface of the ploughshare because of its interaction with the soil are determined depending on its geometric parameters and the mechanical properties of the soil. This solution is a general approach for the analytical solution of the class of problems of the contact interaction of a rigid body with a deformable medium possessing the properties of elasticity and viscosity.


Author(s):  
Haoting Wang ◽  
Ning Liu ◽  
Lin Ma

Abstract This paper reports the development of a two-dimensional two states (2D2S) model for the analysis of thermal behaviors of Li-ion battery packs and its experimental validation. This development was motivated by the need to fill a niche in our current modeling capabilities: the need to analyze 2D temperature (T) distributions in large-scale battery packs in real time. Past models were predominately developed to either provide detailed T information with high computational cost or provide real-time analysis but only 1D lumped T information. However, the capability to model 2D T field in real time is desirable in many applications ranging from the optimal design of cooling strategies to onboard monitoring and control. Therefore, this work developed a new approach to provide this desired capability. The key innovations in our new approach involved modeling the whole battery pack as a complete thermal-fluid network and at the same time calculating only two states (surface and core T) for each cell. Modeling the whole pack as a complete network captured the interactions between cells and enabled the accurate resolution of the 2D T distribution. Limiting the calculation to only the surface and core T controlled the computational cost at a manageable level and rendered the model suitable for packs at large scale with many cells.


Sign in / Sign up

Export Citation Format

Share Document