An experimental study of steel fiber-reinforced high-strength concrete slender columns under cyclic loading

2013 ◽  
Vol 57 ◽  
pp. 565-577 ◽  
Author(s):  
Karen E. Caballero-Morrison ◽  
J.L. Bonet ◽  
Juan Navarro-Gregori ◽  
Pedro Serna-Ros
2016 ◽  
Vol 851 ◽  
pp. 798-802
Author(s):  
Qiao Yan Guan ◽  
Juan Wang ◽  
Ming En Zhang

The effect of volume fraction of steel fiber and the strength of reinforcement on the maximum crack width of steel fiber reinforced high-strength concrete beams was analyzed based on experimental results. In addition, the formula to calculate the maximum crack width of steel fiber-reinforced high-strength concrete beams was established.


2012 ◽  
Vol 238 ◽  
pp. 190-195
Author(s):  
Dan Ying Gao ◽  
Ming Zhang

Based on the fatigue test, 8 steel fiber reinforced high-strength concrete beams are studied, the influencing factors of crack width are discussed in the paper, and the calculation method of crack width under fatigue load is investigated. Based on the analysis of test results, the formulas are put forward. The results show that adding steel fiber into the high-strength concrete beams can prevent the development of the fatigue crack, fatigue crack widths are decreased by 26.0%~121.0% and the calculated values have good agreement with test date.


2012 ◽  
Vol 476-478 ◽  
pp. 1568-1571
Author(s):  
Ting Yi Zhang ◽  
Guang He Zheng ◽  
Ping Wang ◽  
Kai Zhang ◽  
Huai Sen Cai

Through the three-point bending test on the specimens of steel fiber reinforced high strength concrete (SFHSC), the effects of influencing factors including water-cement ratio (W/C) and the fiber volume fraction (ρf) upon the critical value(JC) of J integral were studied. The results show that the variation tendencies of JC are different under different factors. JC meets the linear statistical relation with W/C, ρf, respectively.


Sign in / Sign up

Export Citation Format

Share Document