compliant actuator
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Jiali Liu ◽  
Yong Xu ◽  
Haorang Shi ◽  
Jie Yang

The cable-driven flexible arm based on the principle of origami is a new type of non-articulated compliant actuator with high integration, high environmental adaptability, large workspace/large deployment ratio. The forward/reverse kinematic models of joint space, operation space and driving space along with trajectory error model of the cable-driven flexible arm were proposed in this paper. The prototype of the flexible arm was developed capable of realizing bending, torsion and expansion/contraction. The simulation and experiment results of the cable-driven foldable flexible arm verified feasibility of the kinematic models and driving method proposed in this paper. Above research achievements lay necessary foundation for the next step to realize the key service functions of grasping/manipulation, three-dimensional precise movement, non-structural environment interaction/adaptation of the flexible arm with variable stiffness, variable configuration and variable size.


2021 ◽  
Vol 12 (2) ◽  
pp. 837-846
Author(s):  
Qian Lu ◽  
Chengyang Wang ◽  
Kaikai Zhang ◽  
Hong Gao

Abstract. In order to improve the key performance of the compliant actuators, it is necessary to parametrically optimize the compliant actuators based on the compliance features of flexible hinges. A new structural parameter λ, the compliance ratio, which could reflect the sensitivity of the main form of the output displacement, was proposed and analyzed in detail. A compliant lever actuator was developed, and it was optimized by making use of the parameter λ. The optimization was also validated by finite element method (FEM) simulation and experiment. The simulation and experiment results both show that the magnification ratio of the compliant actuator could be enlarged effectively based on the compliance features of flexible hinges. Finally, an actual application of the linear positioning platform that was driven by the compliant lever actuator directly was carried out, and the experiment data also show that the platform with the optimized actuator has different degrees of optimization in terms of the key performance, including the resolution, the motion speed, and the working stroke. It is helpful to develop the compliant actuators and apply it into the precision engineering.


2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Noah Kohls ◽  
Ibrahim Abdeally ◽  
Bryan P. Ruddy ◽  
Yi Chen Mazumdar

Abstract Electromagnetic actuators provide fast speed, large forces, high strokes, and wide bandwidths. Most designs, however, are constructed from rigid components, making these benefits inaccessible for many soft robotics applications. In this work, we develop a new soft electromagnetic linear actuator using liquid gallium–indium for the conductor and neodymium–iron–boron and polymer composites for the permanent magnet. When combined in a solenoid configuration, high strokes can be generated using entirely soft components. To emulate the pulsing motion of Xenia coral arms, we develop an additional soft flexure system that converts the linear translation to rotary motion. The design and fabrication of the electromagnetic actuator and compliant flexure are first described. Models for the magnetic forces and the joint kinematics are then developed and compared with the experimental results. Finally, the robot dynamics are analyzed using stochastic system identification techniques. Results show that the compliant actuator is able to achieve an 18 mm stroke, allowing the soft arms to bend up to 120 deg. This further enables the tips of the arms to traverse an arc length of 42 mm. Bandwidths up to 30 Hz were also observed. While this article focuses on emulating a biological system, this highly deformable actuator design can also be utilized for fully soft grasping or wearables applications.


2021 ◽  
Vol 11 (3) ◽  
pp. 1246
Author(s):  
Ovidiu Filip ◽  
Andrea Deaconescu ◽  
Tudor Deaconescu

Early social reintegration of patients with disabilities of the wrist is possible with the help of dedicated rehabilitation equipment. Using such equipment reduces the duration of recovery and reduces significantly rehabilitation costs. Based on these considerations the paper puts forward a novel constructive solution of rehabilitation equipment that ensures the simultaneous passive mobilization of the radiocarpal, metacarpophalangeal, and interphalangeal joints. The novelty of this equipment consists in the bioinspired concept of the hand support based on the Fin-Ray effect and in driving it by means of a pneumatic muscle, an inherently compliant actuator. The paper places an emphasis on the compliant character of the rehabilitation equipment that is responsible for its adaptability to the concrete conditions of patient pain tolerability.


2020 ◽  
Vol 17 (169) ◽  
pp. 20200358
Author(s):  
Anja Mader ◽  
Max Langer ◽  
Jan Knippers ◽  
Olga Speck

Within the framework of a biomimetic top-down approach, our study started with the technical question of the development of a hinge-free and compliant actuator inspired by plant movements. One meaningful biological concept generator was the opening and closing movements of the leaf halves of grasses. Functional morphological investigations were carried out on the selected model plant Sesleria nitida . The results formed the basis for further clarifying the functional movement principle with a particular focus on the role of turgor changes in bulliform cells on kinetic amplification. All findings gained from the investigations of the biological model were incorporated into a finite-element analysis, as a prerequisite for the development of a pneumatic cellular actuator. The first prototype consisted of a row of single cells positioned on a plate. The cells were designed in such a way that the entire structure bent when the pneumatic pressure applied to each individual cell was increased. The pneumatic cellular actuator thus has the potential for applications on an architectural scale. It has subsequently been integrated into the midrib of the facade shading system Flectofold in which the bending of its midrib controls the hoisting of its wings.


Author(s):  
Alessandro Mauri ◽  
Jacopo Lettori ◽  
Giovanni Fusi ◽  
Davide Fausti ◽  
Maurizio Mor ◽  
...  

Exoskeleton robots are a rising technology in industrial contexts to assist humans in onerous applications. Mechanical and control design solutions are intensively investigated to achieve a high performance human-robot collaboration (e.g., transparency, ergonomics, safety, etc.). However, the most of the investigated solutions involve high-cost hardware, complex design solutions and standard actuation. In the presented work, an industrial exoskeleton for lifting and transportation of heavy parts is proposed. A low-cost mechanical design solution is proposed, exploiting compliant actuation at the shoulder joint to increase safety and transparency in human-robot cooperation. A hierarchic model-based controller is then proposed (including the modeling of the compliant actuator) to actively assist the human while executing the task. An inner optimal controller is proposed for trajectory tracking, while an outer fuzzy logic controller is proposed to online deform the task trajectory on the basis of the human’s intention of motion. A gain scheduler is also designed to calculate the optimal control gains on the basis of the performed trajectory. Simulations have been performed in order to validate the performance of the proposed device, showing promising results. The prototype is under realization.


Sign in / Sign up

Export Citation Format

Share Document