Evaluation of compressive membrane action effects on punching shear resistance of reinforced concrete slabs

2015 ◽  
Vol 95 ◽  
pp. 25-39 ◽  
Author(s):  
Beatrice Belletti ◽  
Joost C. Walraven ◽  
Francesco Trapani
1990 ◽  
Vol 17 (5) ◽  
pp. 686-697 ◽  
Author(s):  
F. J. Vecchio ◽  
K. Tang

The formation and influence of compressive membrane action in reinforced concrete slabs is discussed. An experimental program is described, in which two large-scale slab specimens were tested under concentrated midspan loads. One slab was restrained against lateral expansion at the ends, while the other was free to elongate. The laterally restrained specimen developed high axial compressive forces, which resulted in a significant increase in flexural stiffness and load capacity. A nonlinear analysis procedure was used to model specimen behaviour. The analysis method was found to adequately represent important second-order effects, and thus gave reasonably accurate predictions of load–deformation response and ultimate load. Key words: analysis, concrete, deformation, load, membrane, reinforced, slabs, strength, tests.


2020 ◽  
pp. 136943322097814
Author(s):  
Xing-lang Fan ◽  
Sheng-jie Gu ◽  
Xi Wu ◽  
Jia-fei Jiang

Owing to their high strength-to-weight ratio, superior corrosion resistance, and convenience in manufacture, fiber-reinforced polymer (FRP) bars can be used as a good alternative to steel bars to solve the durability issue in reinforced concrete (RC) structures, especially for seawater sea-sand concrete. In this paper, a theoretical model for predicting the punching shear strength of FRP-RC slabs is developed. In this model, the punching shear strength is determined by the intersection of capacity and demanding curve of FRP-RC slabs. The capacity curve is employed based on critical shear crack theory, while the demand curve is derived with the help of a simplified tri-linear moment-curvature relationship. After the validity of the proposed model is verified with experimental data collected from the literature, the effects of concrete strength, loading area, FRP reinforcement ratio, and effective depth of concrete slabs are evaluated quantitatively.


Author(s):  
Kyoung-Kyu Choi ◽  
Gia Toai Truong ◽  
Seon-Du Kim ◽  
In-Rak Choi

2017 ◽  
Vol 145 ◽  
pp. 518-527 ◽  
Author(s):  
Juozas Valivonis ◽  
Tomas Skuturna ◽  
Mykolas Daugevičius ◽  
Arnoldas Šneideris

Sign in / Sign up

Export Citation Format

Share Document