Punching Shear Failure in Reinforced Concrete Slabs with Compressive Membrane Action

2003 ◽  
Vol 100 (4) ◽  
2020 ◽  
Vol 26 (5) ◽  
pp. 106-127
Author(s):  
Athraa H. Gharbi ◽  
Akram S. Mahmoud

The main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrease the uncertainties in data used in the analysis. A parametric study was adopted in this study,  it has many factors such as the ratios of length to thickness, fire temperature, time exposed to fire, concrete compressive strength, area exposed to fires and type of support. It can be concluded from this research the significant factors that affect the punching shear strength. However, the increasing ratio of length to thickness may be lead to increasing the deflection more than 123% at fire condition. Also, the increasing temperature leads to increasing the deflection about 40% at fire condition.


Author(s):  
Hamid Abdulmahdi Faris ◽  
Lubna Mohammed Abd

The "flat slab" is a reinforced concrete slab bolstered, by a number of columns. Punching, shear is a category for collapse for reinforced concrete slabs exposed to great confined forces. In "flat slab" constructions the shear failure happens, at column bolster joints. To avoid this, collapse two methods are used, first method is increasing the column dimensions and, the other is to use drop panel if the first method leads to uneconomical, design. Two examples are used to find the effect, of column dimensions, increase on the punching shear failure of "flat slab". The first example, is a "flat slab" of span (5 by 5) m and the other is of span (6 by 6) m. The column which examined is the interior, edge and corner columns, and the interior column is the most dangerous case. It is concluded that, the increase of column dimensions are lead to avoid of punching shear failure in "flat slab" and the drop panel is enlarge the area of the critical shear perimeter and this avoiding punching shear failure.


2021 ◽  
Vol 25 (Special) ◽  
pp. 4-115-4-126
Author(s):  
Liwaa Abd Alhussen ◽  
◽  
Layth A. Al-jaberi ◽  
Ra’id F. Abbas ◽  
◽  
...  

The reaction of column to flat slabs may cause what is known as “punching shear stresses” when the stress is normally concentrated within the perimeter around the loaded area. In general, the reinforced concrete slabs are not designed for any shear failure due to the sudden nature of this type of failure. Many solutions can be followed to overcome such issue like increasing the depth of slab and diameter of columns. Increasing the slab thickness may add extensive dead loads and can breaks the economy justifications of this structural member. On the other hand, increasing the diameter of any column may un accepted due to architectural purposes. The high performance concrete is such type of concrete that illustrate high levels of mechanical performance “structural behavior as a consequence” if compared with normal concrete. Due to that, the high performance concrete may give good alternative an exceeds the problem of punching as a result. The basic aim of this study is to propose a brief review regarding this field of research. However, this study is divided to three parts, the first is devoted to view a suitable background about the punching shear capacity of traditional concrete slabs. The second part is registered to view the past experience in reinforced concrete slabs punching capacity and have steel fibers while the second part is devoted to present the state of art concerning the punching shear of high performance concrete slabs.


1990 ◽  
Vol 17 (5) ◽  
pp. 686-697 ◽  
Author(s):  
F. J. Vecchio ◽  
K. Tang

The formation and influence of compressive membrane action in reinforced concrete slabs is discussed. An experimental program is described, in which two large-scale slab specimens were tested under concentrated midspan loads. One slab was restrained against lateral expansion at the ends, while the other was free to elongate. The laterally restrained specimen developed high axial compressive forces, which resulted in a significant increase in flexural stiffness and load capacity. A nonlinear analysis procedure was used to model specimen behaviour. The analysis method was found to adequately represent important second-order effects, and thus gave reasonably accurate predictions of load–deformation response and ultimate load. Key words: analysis, concrete, deformation, load, membrane, reinforced, slabs, strength, tests.


2011 ◽  
Vol 250-253 ◽  
pp. 3521-3532

removed due to plagiarism The original paper was published at: http://www.simulia.com/forms/world/pdf2008/WINKLER-AUC2008.pdf


2020 ◽  
pp. 136943322097814
Author(s):  
Xing-lang Fan ◽  
Sheng-jie Gu ◽  
Xi Wu ◽  
Jia-fei Jiang

Owing to their high strength-to-weight ratio, superior corrosion resistance, and convenience in manufacture, fiber-reinforced polymer (FRP) bars can be used as a good alternative to steel bars to solve the durability issue in reinforced concrete (RC) structures, especially for seawater sea-sand concrete. In this paper, a theoretical model for predicting the punching shear strength of FRP-RC slabs is developed. In this model, the punching shear strength is determined by the intersection of capacity and demanding curve of FRP-RC slabs. The capacity curve is employed based on critical shear crack theory, while the demand curve is derived with the help of a simplified tri-linear moment-curvature relationship. After the validity of the proposed model is verified with experimental data collected from the literature, the effects of concrete strength, loading area, FRP reinforcement ratio, and effective depth of concrete slabs are evaluated quantitatively.


Sign in / Sign up

Export Citation Format

Share Document