scholarly journals New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures

2017 ◽  
Vol 132 ◽  
pp. 70-86 ◽  
Author(s):  
B. Alfarah ◽  
F. López-Almansa ◽  
S. Oller
2011 ◽  
Vol 82 ◽  
pp. 259-265 ◽  
Author(s):  
Kunhwi Kim ◽  
John E. Bolander ◽  
Yun Mook Lim

The mechanical properties of concrete materials vary with the loading rate underdynamic conditions, which can influence the dynamic fracture behavior of structures. The ratedependency is reported as due to the microscopic mechanisms, such as a material inertia effectand the Stefan effect. In this study, the rigid-body-spring network (RBSN) is employed forthe fracture analysis, and the visco-plastic damage model is implemented to represent the rateeffect in this macroscopic simulation framework. The parameters in the Perzyna type visco-plastic formulation are adjusted through the direct tensile test with various loading rates asa preliminary calibration. As the loading rate increases, the strength increase is presented interms of the dynamic increase factor (DIF), and compared with the experimental and empiricalresults. Next, the flexural beam test is conducted for plain and reinforced concrete beams underslow and impact rates of loading. At the failure stage, different crack patterns are observeddepending on the loading rate. The impact loading induces the failure to be more localizedon the compressive zone of the beam, which is due to rather the rate dependent materialfeatures. In structural aspects, the reinforcement exerts stronger effects on reducing crack widthand improving ductility at the slow loading rate. The ductility is also evaluated through thecomparison of load-deformation curves until the final rupture of the beams. This study canprovide understandings of the structural rate dependent behavior and the reinforcing effectunder dynamic loadings.


Bauingenieur ◽  
2015 ◽  
Vol 90 (06) ◽  
pp. 252-264 ◽  
Author(s):  
Dominik Kueres ◽  
Alexander Stark ◽  
Martin Herbrand ◽  
Martin Classen

Die numerische Simulation des Tragverhaltens von Beton- und Stahlbetonkonstruktionen mit nicht-linearen Finite-Elemente-Modellen gewinnt in der konstruktiven Ingenieurpraxis zunehmend an Bedeutung. In kommerziellen Finite-Elemente-Programmen stehen dem Anwender unterschiedliche Möglichkeiten zur Abbildung des Betonverhaltens in Form von plastischen Materialmodellen zur Verfügung. Zur Anwendung dieser Materialmodelle ist dabei in der Regel die Kenntnis des Betontragverhaltens unter einaxialer Druck- und Zugbeanspruchung erforderlich. Im vorliegenden Beitrag werden verschiedene Ansätze zur mathematischen Beschreibung dieser konstitutiven Beziehungen für Normalbeton und ultrahochfesten Beton (UHPC) vorgestellt und im Hinblick auf ihre Anwendbarkeit in plastischen Materialmodellen untersucht. Darauf aufbauend werden numerische Simulationen mit einem plastischen Schädigungsmodell unter Verwendung eines einheitlichen Parametersatzes durchgeführt und mit den Ergebnissen experimenteller Untersuchungen verglichen. Die Untersuchungen umfassen hierbei Materialprüfungen an Normalbeton und UHPC unter verschiedenen ein- und mehraxialen Spannungszuständen. Durch die Wahl geeigneter konstitutiver Beziehungen kann für die untersuchten Spannungszustände eine gute Übereinstimmung zwischen simuliertem und experimentell ermitteltem Betontragverhalten erreicht werden.


2019 ◽  
Vol 171 ◽  
pp. 21-33 ◽  
Author(s):  
Chunwang He ◽  
Jingran Ge ◽  
Dexing Qi ◽  
Jiaying Gao ◽  
Yanfei Chen ◽  
...  

2018 ◽  
Vol 51 (5) ◽  
pp. 1413-1429 ◽  
Author(s):  
Jingqi Huang ◽  
Mi Zhao ◽  
Xiuli Du ◽  
Feng Dai ◽  
Chao Ma ◽  
...  

2022 ◽  
Vol 148 (2) ◽  
Author(s):  
Dechun Lu ◽  
Fanping Meng ◽  
Xin Zhou ◽  
Guosheng Wang ◽  
Xiuli Du
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document