High-resolution finite element modeling for bond in high-strength concrete beam

2018 ◽  
Vol 173 ◽  
pp. 918-932 ◽  
Author(s):  
Seungwook Seok ◽  
Ghadir Haikal ◽  
Julio A. Ramirez ◽  
Laura N. Lowes
Teras Jurnal ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 375
Author(s):  
Mahmud Kori Effendi ◽  
Novi Rahmayanti

<p align="center"><strong>Abstrak</strong></p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Indonesia merupakan negara yang rentan terhadap bencana gempa bumi. Banyak rumah atau gedung di Indonesia dibangun dengan menggunakan material beton bertulang. Kerusakan geser pada elemen beton bertulang tersebut sangat berbahaya, hal ini dikarenakan kerusakan ini terjadi secara tiba-tiba dan biasanya terjadi secara eksplosif. Analisis nonlinier elemen hingga tiga dimensi balok beton memadat mandiri dan beton mutu tinggi dengan pemadatan mekanis dilakukan dengan software MSC Marc/Mentat. Baja dimodelkan dengan tertanam di beton. Kriteria kegagalan Linier Mohr-Coulomb digunakan untuk beton dan Von Mises untuk baja tulangan. Hasil kurva hubungan beban-lendutan untuk kedua balok beton memadat mandiri dan beton mutu tinggi pemadatan mekanis hampir sama dengan hasil kurva eksperimen di daerah elastic, namun setelah melewati fase elastik, kurva analisis berbeda sedikit dengan kurva eksperimen. Hasil analisis teoritis kekuatan beton hampir sama dengan hasil analisis elemen hingga balok beton tanpa tulangan. Hasil analisis kontak juga memperlihatkan terjadi kontak dan perlepasan pada bidang kontak baja tumpuan beban dan tumpuan balok dengan beton.</p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Kata kunci: <em>beton memadat mandiri,</em><em> mutu tinggi, elemen hingga, MSC Marc/Mentat</em><em></em></p><p class="11daftarpustaka"> </p><p align="center"><strong> </strong></p><p align="center"><strong>Abstract</strong></p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Indonesia is a country that is prone to earthquakes. Many houses or buildings in Indonesia are built using reinforced concrete material. Shear damage to reinforced concrete elements is very dangerous, because this damage occurs suddenly and usually occurs explosively. The nonlinear three-dimensional finite element analysis of self-compacting concrete beam and high strength concrete beam by mechanical compaction were carried out using the MSC Marc/Mentat software. Steel is modeled by being embedded in concrete. The Mohr-Coulomb Linear failure criterion is used for concrete and Von Mises for reinforcing steel. The results of the load- deflection curves for both self-compacting and mechanical compaction high-strength concrete beams are almost the same as those of the experimental curves in the elastic area, after elasticity, the analysis curve differs slightly from the experimental curve. The results of the theoretical analysis of the strength of the concrete are almost the same as the results of the analysis of the finite element concrete beams without reinforcement. The results of the contact analysis also showed that there was contact and detachment in the contact area of the load bearing steel and the beam support with the concrete.</p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Keywords: <em>self-compacting concrete, high strength, finite element, MSC Marc/Mentat</em><em></em></p>


2018 ◽  
Vol 7 (4.19) ◽  
pp. 794
Author(s):  
Fatimah Hameed Naser Al-Mamoori ◽  
Ali Hameed Naser Al-Mamoori

The current research studies the effect of cold joints on the behavior shear and flexure of High Strength Concrete (HSC) beams caused by delayed casting sequence during the hot weather in summer of Iraq.Fresh concrete should be kept alive during the various casting batches for concrete element by re-vibration. However, the over vibration caused loss in homogeneity and it is difficult to keep the workability of concrete during hot weather due to the effect of setting time.To deal with this problem of improper casting sequence, which eventually leads to the formation of cold joints, it will be used sugar waste (named as Sugar Molasses (SM)) is a by-product resulted from refining process of sugar as a delayed agent to increase the setting time in order to prevent early set of concrete due to adverse effects in construction joint of hot weather.In the current study, the first objective aims to investigate some of fresh and hardened mechanical properties of HSC (with high cement content) using SM at percentages of (0, 0.05, 0.1, 0.2, 0.3) % from the weight of cement under the concept of sustainable development. The second objective aims to investigate the location and surface texture effect of horizontal and vertical cold joints on the flexural and shear behavior of beam with/without SM. This objective includes testing of twenty four plain concrete beam of (110×110×650 mm) under two point load; half of them casting without roughing (smooth) the old layer and the other casted after roughed it.SM content of 0.2% of cement weight can improve compressive strength by about 11.2% at 28 days and delay initial setting time by about 4.617 hours (277 minutes). No adverse effect on concrete have been observed at this dosage of SM concentration for the ages of concrete cylinders studied. Delays in the setting of concrete at this dosage of SM content help in reducing the early setting of concrete and therefore reduced the impact of the cold joints formation in concrete beams under Iraqi hot weather condition. The failure load for the beams with SM of smooth and rough vertical joints is in the range between (1.95 - 2.12) and (1.46-1.37); respectively times that of the case of beam without SM. 


Sign in / Sign up

Export Citation Format

Share Document