Structural Mechanics of Engineering Constructions and Buildings
Latest Publications


TOTAL DOCUMENTS

220
(FIVE YEARS 134)

H-INDEX

3
(FIVE YEARS 2)

Published By Peoples' Friendship University Of Russia

2587-8700, 1815-5235

Author(s):  
Gaik A. Manuylov ◽  
Sergey B. Kositsyn ◽  
Irina E. Grudtsyna

The aims of this work are a detailed consideration in a geometrically nonlinear formulation of the stages of the equilibrium behavior of a compressed stiffened plate, taking into account the interaction of the general form of buckling and local forms of wave formation in the plate or in the reinforcing ribs, comparison of the results of the semi-analytical solution of the system of nonlinear equations with the results of the numerical solution on the Patran-Nastran FEM complex of the problem of subcritical and postcritical equilibrium of a compressed stiffened plate. Methods. Geometrically-nonlinear analysis of displacement fields, deformations and stresses, calculation of eigenforms of buckling and construction of bifurcation solutions and solutions for equilibrium curves with limit points depending on the initial imperfections. An original method is proposed for determining critical states and obtaining bilateral estimates of critical loads at limiting points. Results. An algorithm for studying the equilibrium states of a stiffened plate near critical points is described in detail and illustrated by examples, using the first nonlinear (cubic terms) terms of the potential energy expansion, the coordinates of bifurcation points and limit points, as well as the corresponding values of critical loads. The curves of the critical load sensitivity are plotted depending on the value of the initial imperfections of the total deflection. Equilibrium curves with characteristic bifurcation points of local wave formation are constructed using a numerical solution. For the case of action of two initial imperfections, an algorithm is proposed for obtaining two-sided estimates of critical loads at limiting points.


Author(s):  
Vera V. Galishnikova ◽  
Alireza Heidari ◽  
Paschal C. Chiadighikaobi ◽  
Adegoke Adedapo Muritala ◽  
Dafe Aniekan Emiri

Relevance. The load on a reinforced concrete slab with high strength lightweight aggregate concrete leads to increased brittleness and contributes to large deflection or flexure of slabs. The addition of fibers to the concrete mix can improve its mechanical properties including flexure, deformation, toughness, ductility, and cracks. The aims of this work are to investigate the flexure and ductility of lightweight expanded clay concrete slabs reinforced with basalt fiber polymers, and to check the effects of basalt fiber mesh on the ductility and flexure. Methods. The ductility and flexural/deflection tests were done on nine engineered cementitious composite (expanded clay concrete) slabs with dimensions length 1500 mm, width 500 mm, thickness 65 mm. These nine slabs are divided in three reinforcement methods types: three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm (first slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed chopped basalt fiber plus basalt fiber polymer (mesh) of cells 2525 mm (second slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed basalt fiber of length 20 mm, diameter 15 m (third slab type). The results obtained showed physical deflection of the three types of slab with cracks. The maximum flexural load for first slab type is 16.2 KN with 8,075 mm deflection, second slab type is 24.7 KN with 17,26 mm deflection and third slab type 3 is 32 KN with 15,29 mm deflection. The ductility of the concrete slab improved with the addition of dispersed chopped basalt fiber and basalt mesh.


Author(s):  
Oleg V. Mkrtychev ◽  
Yury V. Novozhilov ◽  
Anton Yu. Savenkov

At the objects of space infrastructure and at nuclear power facilities there are industrial structures, the main task of which is to protect a person, equipment or machinery from emergencies such as, for example, explosions, falling of various objects, fragments. In accordance with the requirements of the Federal Law On the Protection of the Population and Territories from Natural and Technogenic Emergencies, when calculating such structures, all types of loads corresponding to their functional purpose must be taken into account. So, for structures located in the area of a possible accident and the fall of space rockets, it is necessary to calculate for the fall of the destroyed parts of the rocket engine. For nuclear power plant facilities, such accidents occur when containers and other heavy objects fall on the ground, affecting underground structures located in the ground, and for civil defense protective structures built into the basement floors of buildings, it is necessary to consider situations in which the overlying floors of a building collapse when exposed to there is an air shock wave on them. Therefore, this problem is relevant, and in this study, a finite-element method for calculating an underground structure in a non-linear dynamic setting has been developed when a large overall object collides with the ground.


Author(s):  
David Cajamarca-Zuniga ◽  
Sebastian Luna

Relevance. This work is the first in a series of publications on the selection of a suitable analytical surface for implementation as a self-supporting structure for a thin shell footbridge. The study on the influence of concrete strength, live load position and support types on the stress-strain state of a hyperbolic paraboloid (hypar) shell is presented. Objective - to define the initial design parameters such as the appropriate concrete strength and the support type that generates the best structural behaviour to perform the subsequent structural design of a thin shell footbridge. Methods. The static finite element analysis was performed for 4 compressive strengths of concrete (28, 40, 80, 120 MPa) which correspond normal, high and ultra-high resistance concrete, 5 different live load arrangements and 3 different support conditions. Results. The shell model with pinned (two-hinged) supports shows the same vertical displacements as the model with fixed supports (hingeless). For the studied shell thickness, in terms of stress behaviour, the model with pinned ends is more efficient. The combination of two-hinged supports with 80 MPa concrete strength shows a better structural performance.


Author(s):  
Aleksandr E. Babsky ◽  
Vladimir V. Lalin ◽  
Ilia I. Oleinikov ◽  
Vladimir A. Tarasov

The seismic resistance of vibration-insulated turbine foundations is a complex and multifaceted problem that includes many aspects. The turbine foundation is a special building structure that unites parts of the turbine and generator unit into a single machine and it is used for static and dynamic loads accommodation. The number of designed and constructed power plants in high seismic level areas is large and steadily growing. In addition, engineers and designers deal with the issue of the frequency composition of the seismic impact influence on the seismic resistance of vibration-insulated turbine foundations. Dynamic calculations were performed in Nastran software using time history analysis and the finite element method. The main criteria for the seismic resistance of a vibration-insulated turbine foundation are the values of the maximum seismic accelerations in the axial direction at the level of the turbine installation and the values of vibration-insulated foundation maximum seismic displacements (deformations of vibration isolators). The results of the calculation experiments proved a significant effect of seismic action frequency composition on the behavior of the vibration-insulated turbine foundations. Calculations of foundations, taking into account earthquakes of the same intensity, but with different values of the prevailing frequencies of the impact, lead to the differing by several times values of the maximum seismic accelerations at the turbine level and seismic displacements.


Author(s):  
Yury T. Chernov ◽  
Jaafar Qbaily

The aim of the work - development of one of the possible methods for seismic analysis that considers the inelastic behavior of structures under seismic loads. This requires the development of seismic analysis methods that take into account the change (decrease) in the bearing capacity or the destruction of individual elements until the final loss of the bearing capacity of the structure. Methods. The dependences and algorithms include determining seismic forces using the method of normal forms, which until now is the main one in solving problems of the seismic resistance theory in seismic regions, calculation formulas to calculate seismic forces at each time step are presented in the form of expansions into natural vibration modes, which regard the changes in the design scheme. The calculation is repeated at each time step as a static calculation for the action of seismic forces determined at the previous stage, before the building collapses. Results. The developed dependencies and algorithms allow to consider changes in the design scheme during vibrations at each time step, changes in the dynamic properties of the building and, as a result, the values of seismic forces. The value of the coefficient of inelastic work of structures K 1, which are given in regulatory documents, do not give fully correspond to the actual behavior of the structure under seismic influences. The proposed calculation method allows to determine the estimated values of seismic forces and their distribution taking into account the influence of damage of elements and the appearance of inelastic zones in the design process of fluctuations at each time step and to assess the dynamic behavior of the building.


Author(s):  
Fedor A. Pashchenko

Relevance. Retaining walls are common structures that are part of waterworks. They have the characteristic features of hydraulic structures, such as large dimensions, low percentages of reinforcement (up to 1.0%), horizontal interblock joints. The listed features determine the nature of the work and the stress-strain state of the retaining walls. The main loads on the rear faces of the retaining walls are loads from the action of the backfill soil. The incomplete consideration of the design features and the nature of the loads action in the design of a number of retaining walls that are in the stage of long-term operation has caused the need to strengthen them. One of the reinforcement methods was to install reinforcement rods in drilled inclined holes in the zones of horizontal interblock joints. It was necessary to conduct experimental studies of reinforced concrete retaining walls under the action of various loads, in particular conside- ring the reinforcement by inclined rods. The aim of the experimental research was to study the effect of variable load on the stress-strain state of these structures, among others with due regard to inclined reinforcement installed in the zones of horizontal interblock joints. When solving the set tasks, proven experimental methods of researching reinforced concrete structures of hydrotechnical structures were used. Results. Experimental data from the study of models of retaining walls, including those with reinforcement by inclined reinforcement, at different locations of the resultant load on rear faces of models were obtained. An experimental substantiation of the reinforcement of reinforced concrete structures of retaining walls with an inclined reinforcement crossing horizontal construction joints has been carried out.


Author(s):  
Krishna Ghimire ◽  
Hemchandra Chaulagain

In most of the countries, the irregular building construction is popular for fulfilling both aesthetic and functional requirements. However, the evidence of past earthquakes in Nepal and the globe demonstrated the higher level of seismic vulnerability of the buildings due to irregularities. Considering this fact, the present study highlighted the common irregularities and its effect on reinforced concrete building response. The effect of structural irregularities was studied through numerical analysis. The geometrical, mass and stiffness irregularities were created by removing bays in different floor levels and removing the columns at different sections respectively. In this study, the numerical models were created in finite element program SAP2000. The structural performance was studied using both non-linear static pushover and dynamic time history analysis. The results indicate that the level of irregularities significantly influenced the behavior of structures.


Author(s):  
Nartmir V. Khanov ◽  
Fedor A. Pashchenko

Relevance. The lower retaining walls of the water intake of the Zagorskaya PSPP perform the important function of protecting the pressure water conduits from the collapse of the soil massif. Two of them (LN-2 and LN-3) were reinforced with anchor rods. Considering the long period of operation (more than 25 years), certain deviations in the work during examinations and field observations were revealed. So, on the front face of the walls, extended horizontal cracks were recorded (opening of horizontal interblock joints and the emergence of secondary oblique cracks on the front surface of the walls). To carry out computational studies of the stress-strain state of the downstream retaining walls was required. The purpose of the work was to determine the stress-strain state of the lower retaining walls of the water intake of the Zagorskaya PSPP taking into account the opening of interblock joints and the formation of secondary oblique cracks. Methods. Computational studies of the stress-strain state of retaining walls were carried out within the framework of the method of numerical modeling of reinforced concrete structures of hydraulic structures based on finite element models. In finite element models, structural features of retaining walls were reproduced, including anchor rods, horizontal interblock joints, actual reinforcement, secondary oblique cracks. Results. The stress-strain state of the retaining walls was obtained. The stresses in the longitudinal and transverse reinforcement were determined, including when the structure was changed due to anchor rods. In horizontally transverse reinforcement, tensile stresses exceeding the yield point are recorded. It took the development of measures to strengthen the lower retaining walls.


Sign in / Sign up

Export Citation Format

Share Document