Rate-dependent model for simulating the hysteretic behavior of low-yield stress buckling-restrained braces under dynamic excitations

2021 ◽  
Vol 230 ◽  
pp. 111659
Author(s):  
Sarven Akcelyan ◽  
Dimitrios G. Lignos
2019 ◽  
Vol 287 ◽  
pp. 3-7
Author(s):  
Yong Zhang ◽  
Qing Zhang ◽  
Yuan Tao Sun ◽  
Xian Rong Qin

The constitutive modeling of aluminum alloy under warm forming conditions generally considers the influence of temperature and strain rate. It has been shown by published flow stress curves of Al-Mg alloy that there is nearly no effect of strain rate on initial yield stress at various temperatures. However, most constitutive models ignored this phenomenon and may lead to inaccurate description. In order to capture the rate-independent initial yield stress, Peric model is modified via introducing plastic strain to multiply the strain rate, for eliminating the effect of strain rate when the plastic strain is zero. Other constitutive models including the Wagoner, modified Hockett–Sherby and Peric are also considered and compared. The results show that the modified Peric model could not only describe the temperature-and rate-dependent flow stress, but also capture the rate-independent initial yield stress, while the Wagoner, modified Hockett–Sherby and Peric model can only describe the temperature-and rate-dependent flow stress. Moreover, the modified Peric model could obtain proper static yield stress more naturally, and this property may have potential applications in rate-dependent simulations.


Author(s):  
G. E. Papakaliatakis ◽  
E. E. Gdoutos ◽  
E. Tzanaki

2020 ◽  
Vol 146 (1) ◽  
pp. 06019003
Author(s):  
Zhe Qu ◽  
Jinzhen Xie ◽  
Yuteng Cao ◽  
Wenjun Li ◽  
Tao Wang

Author(s):  
Saeid Shakiba ◽  
Mohammad Reza Zakerzadeh ◽  
Moosa Ayati

In this article, two models are used, namely rate-independent and rate-dependent generalized Prandtl–Ishlinskii, to characterize a magnetic shape memory alloy actuator. The results show that the rate-independent model cannot consider the effect of input excitation frequency, while the rate-dependent model omits this drawback by defining a time-dependent operator. For the first time, the effects of excitation frequency on the hysteretic behavior of magnetic shape memory alloy actuator are investigated. In this study, five excitation voltages with different frequencies in the range of 0.05–0.4 Hz are utilized as inputs to the magnetic shape memory alloy actuator and the displacement outputs are measured. Experimental results indicate that, with increasing the excitation frequency, the size of the hysteresis loops changes. Since the generalized rate-dependent Prandtl–Ishlinskii model cannot consider the asymmetric hysteresis loops, in the developed model, a tangent hyperbolic function is applied as an envelope function in order to improve the capability of the model in characterizing the asymmetric behavior of magnetic shape memory alloy actuator. The parameters of both rate-dependent and rate-independent models are identified by genetic algorithm optimization. The results reveal that the rate-independent form is not capable of accurately describing the hysteretic behavior of magnetic shape memory alloy actuator for different input frequencies. Simulation and experimental results also demonstrate the proficiency of the developed model for precise characterization of the saturated rate-dependent hysteresis loops of magnetic shape memory alloy actuator. In addition, the proposed model is utilized for determining a proper range for controller coefficients during controller design.


2006 ◽  
Vol 326-328 ◽  
pp. 1459-1462
Author(s):  
Young Min Han ◽  
Quoc Hung Nguyen ◽  
Seung Bok Choi ◽  
Kyung Su Kim

This paper experimentally investigates the hysteretic behaviors of yield stress in electrorheological (ER) and magnetorheological (MR) materials which are known as smart materials. As a first step, the PMA-based ER material is prepared by dispersing the chemically synthesized polymethylaniline (PMA) particles into non-conducting oil. For the MR material, commercially available one (Lord MRF-132LD) is chosen for the test. Using the rheometer, the torque resulting from the shear stress of the ER/MR materials is measured, and then the yield stress is calculated from the measured torque. In order to describe the hysteretic behavior of the fielddependent yield stress, a nonlinear hysteresis model of the ER/MR materials is formulated between input (field) and output (yield stress). Subsequently, the Preisach model is identified using experimental first order descending (FOD) curves of yield stress in discrete manner. The effectiveness of the identified hysteresis model is verified in time domain by comparing the predicted field-dependent yield stress with the measured one.


Sign in / Sign up

Export Citation Format

Share Document