Reconfiguring actors and infrastructure in city renewable energy transitions: A regional perspective

Energy Policy ◽  
2021 ◽  
Vol 158 ◽  
pp. 112544
Author(s):  
Christina E. Hoicka ◽  
Jessica Conroy ◽  
Anna L. Berka
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3523 ◽  
Author(s):  
Haichao Wang ◽  
Giulia Di Pietro ◽  
Xiaozhou Wu ◽  
Risto Lahdelma ◽  
Vittorio Verda ◽  
...  

Renewable energy sources (RES) are playing an increasingly important role in energy markets around the world. It is necessary to evaluate the benefits from a higher level of RES integration with respect to a more active cross-border transmission system. In particular, this paper focuses on the sustainable energy transitions for Finland and Italy, since they have two extreme climate conditions in Europe and quite different profiles in terms of energy production and demand. We developed a comprehensive energy system model using EnergyPLAN with hourly resolution for a reference year for both countries. The models include electricity, heat and transportation sectors. According to the current base models, new scenarios reflecting an RES increase in total fuel consumption have been proposed. The future shares of renewables are based on each nation’s potential. The outcomes of the new scenarios support the future national plans, showing how decarburization in an energy system can occur in relation to the European Roadmap 2030 and 2050. In addition, possible power transmission between Italy and Finland were investigated according to the vision of an integrated European energy system with more efficient cross-border activities.


2020 ◽  
Author(s):  
Marc Jaxa-Rozen ◽  
Evelina Trutnevyte

<p>Solar photovoltaic (PV) technology has been the fastest-growing renewable energy technology in recent years. Since 2009, it has in fact experienced the largest capacity growth of any power generation technology, with benchmark levelized costs falling by four-fifths [1]. In addition, the global technical potential of PV largely exceeds global primary energy demand [2]. Nonetheless, PV typically only appears as a relatively marginal option in long-term energy modelling studies and scenarios. These include the mitigation pathways evaluated in the context of the work of the Intergovernmental Panel on Climate Change (IPCC), which rely on integrated assessment models (IAMs) of climate change and have in the past underestimated PV growth as compared to observed rates of adoption [2]. Similarly, global energy projections, such as the International Energy Agency's World Energy Outlook, have been relatively conservative regarding the role of solar PV in long-term energy transitions.</p><p>In order to better understand the long-term global role of solar PV as perceived by various modeling communities, this work synthesizes a broad ensemble of scenarios for global PV adoption at the 2050 horizon. This ensemble includes 784 IAM-based scenarios from the IPCC SR15 and AR5 databases, and 82 other systematically selected scenarios published over the 2010-2019 period in the academic and gray literature, such as PV-focused techno-economic analyses and global energy outlooks. The scenarios are analyzed using a descriptive framework which combines scenario indicators (e.g. mitigation policies depicted in a scenario), model indicators (e.g. the representation of technological change in the underlying model), and meta-indicators (e.g. the type of institution which authored a scenario). We extend this scenario framework to include a text-mining approach, using Latent Dirichlet Allocation (LDA) to associate scenarios with different textual perspectives identified in the ensemble, such as energy access or renewable energy transitions. We then use a scenario discovery approach to identify the combinations of indicators which are most strongly associated with different regions of the scenario space.</p><p>Preliminary results indicate that the date of publication of a scenario has a predominant influence on projected PV adoption values: scenarios published in the first half of the 2010s thus tend to represent considerably lower PV adoption levels. In parallel, higher projected values are more strongly associated with renewable-focused institutions. Increasing the institutional diversity of scenario ensembles may thus lead to a broader range of considered futures [3].</p><p> <br>References<br>[1] Frankfurt School-UNEP Centre, “Global Trends in Renewable Energy Investment 2019,” Frankfurt, Germany, 2019.<br>[2] F. Creutzig, P. Agoston, J. C. Goldschmidt, G. Luderer, G. Nemet, and R. C. Pietzcker, “The underestimated potential of solar energy to mitigate climate change,” Nat Energy, vol. 2, no. 9, pp. 1–9, Aug. 2017, doi: 10.1038/nenergy.2017.140.<br>[3] E. Trutnevyte, W. McDowall, J. Tomei, and I. Keppo, “Energy scenario choices: Insights from a retrospective review of UK energy futures,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 326–337, Mar. 2016, doi: 10.1016/j.rser.2015.10.067.</p>


Subject Clean energy transitions. Significance The European Parliament (EP) is calling for more ambitious clean energy targets than those agreed by EU member states and proposed by the European Commission. However, even the EP’s proposals are unambitious given what is economically feasible and environmentally necessary. President Donald Trump's United States is unlikely to lead the world on energy transitions, leaving a potential opening for China to become an unlikely champion of carbon reduction. Impacts The EP is unlikely to succeed in pushing up the EU’s 2030 targets. Trump’s impact on clean energy development will increase over the remainder of his administration. Modest investment levels will hinder India’s ability to meet its target of 175 gigawatts of renewables by 2022.


Sign in / Sign up

Export Citation Format

Share Document