Denitrification devices in urban boilers change mercury isotope fractionation signatures of coal combustion products

2021 ◽  
Vol 268 ◽  
pp. 115753
Author(s):  
Jingjing Yuan ◽  
Ruoyu Sun ◽  
Ruwei Wang ◽  
Biao Fu ◽  
Mei Meng ◽  
...  
1990 ◽  
Vol 34 ◽  
pp. 429-435
Author(s):  
Leo W. Collins ◽  
David L. Wertz

AbstractThe analysis of coal and the understanding of the combustion process is complex, due to the heterogeneous nature of the material and the myriad of high-temperature reactions inherent in this fossil fuel. The research presented below utilizes recently-developed x-ray diffraction methods to analyze the coal combustion products generated from a laboratory-scale entrained-flow reactor. The reactor was designed, constructed, and tested, as planned for the initial phase of a long-term project to evaluate the coals located in Mississippi. In this initial phase a well-characterized coal was used, supplied by The Pennsylvania State University. The proximate, ultimate, and sulfur analyses of the coal, PSOC 1368p, are outlined in the Appendix. X-ray diffraction techniques have been used In the past to characterize coals. An analysis of the mineral transformation during coal combustion has also been performed using x-ray diffraction instrumentation. The semi-quantitative results of the pyrite (FeS2) phase transformation at variable temperatures and the percent combustion of the coal, as determined by x-ray methods are reported below.


Sign in / Sign up

Export Citation Format

Share Document